Measuring the 3V's of Big Data: A Rigorous Approach

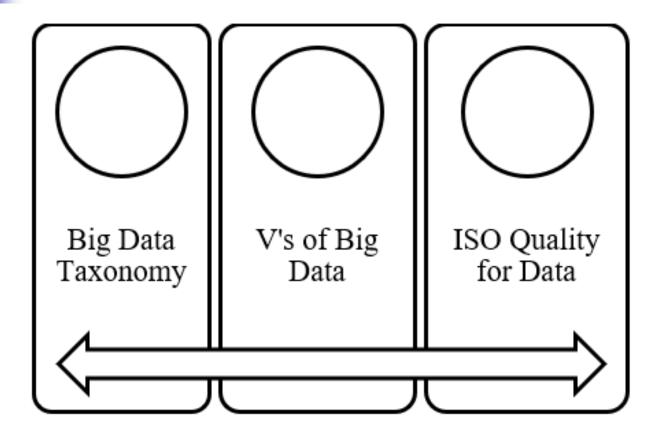
Olga Ormandjieva¹, Mandana Omidbakhsh² and Sylvie Trude²

¹ Concordia University ² Université du Québec à Montréal

Agenda

- Quality of Big Data
- Research Goal
- Background and related work
 - Overview of our Approach to Big Data Quality Measurement
 - Big Data Characteristics Hierarchy: Relevance of NIST
- Proposed 3Vs measurement hierarchical model
- Illustration and validation of the measurement model
- Future work

QUALITY OF BIG DATA


- Data is generally considered as high quality if it is "fit " for its intended uses in operation, decision making and planning
- The quality of Big Data can be measured in terms of its characteristics (the V's)
- V's selected in this work (10V's):
 - Volume, Velocity, Variety, Variability, Value, Veracity, Validity, Vulnerability, Visualisation, Volatility

Research Goal

- Research Project: ensuring visibility and transparency of big data quality by assessing quantitatively the quality of big data in terms of its industrially recognized characteristics (the V's)
- This paper: Proposing a novel measurement information model for the 3V's
 - Volume: Magnitude of the data
 - Variety: Different forms of data
 - Velocity: Speed at which data is being generated.

Overview of our Approach to Big Data Quality Measurement

Omidbakhsh, M., Ormandjieva, O.: Toward A New Quality Measurement Model for Big Data, DATA 2020, The 9th International Conference on Data Science, Technology and Applications (2020).

Relevance of ISO 25012 and ISO25024

• The existing standards reflect two main views:

- The degree to which data quality characteristics satisfy data requirements
- The degree to which data quality is reached and preserved when data is used under specified conditions
- However, quality measurement of Big data is not addressed

Relevance of NIST to Big Data Quality Measurement

- NIST provides a framework which can be used across industry, academia and researchers for which one can extract meaning from ever-larger and more varied datasets
- This framework created by NIST forms the basis for which our research is built and so will be adopted in our research
- The NIST taxonomy for Big Data which consist of Elements, Records, Dataset and Multiple Dataset will be used as foundation for the proposed hierarchical measurement model.

NIST: Big Data Characteristics Hierarchy

- Data Element : Single value of data (cell in a csv)
- Records: Multiple data elements grouped together (row in a csv)
- Datasets: A collection of records (The entire csv)
- Multiple Datasets: Collection of Datasets (Multiple CSVs)

Agenda

- Quality of Big Data
- Research Goal
- Background and related work
 - Overview of our Approach to Big Data Quality Measurement
 - Big Data Characteristics Hierarchy: Relevance of NIST

Proposed 3Vs measurement hierarchical model

- Illustration and validation of the measurement model
- Future work

Mathematical Modeling of the Measurement Entities: set-theoretical approach

- Data Elements: a collection of heterogeneous data elements (set *DE* of *UID_E*)
 - Data elements are stored in records
- record r is a 2-tuple (DEr, m)
 - *DEr* is a subset of *DE*, *m* is the *multiplicity*
- Dataset *DS*: a set of records' unique identifiers (UID_R)
- Big data is viewed as multiple datasets MDS (in mathematical terms, as a set of multisets).

Base Measures

• Number of Distinct Data Elements (Ndde).

- Reflects the variety of the dataset
- Ndde(DE) = |DE|

Number of records in a dataset (Nrec)

- Assesses the variety of dataset in terms of diversity of records & their sources
- NREC(DS) = |DS|

Number of Datasets in Big Data (NDS)

- Number of total unique identifiers UID_{DST} of datasets in multiple datasets
- Nds(MDS) = |MDS|
- Assesses the variety of datasets in terms of multiple datasets (MDS)

 $\bullet Time (T)$

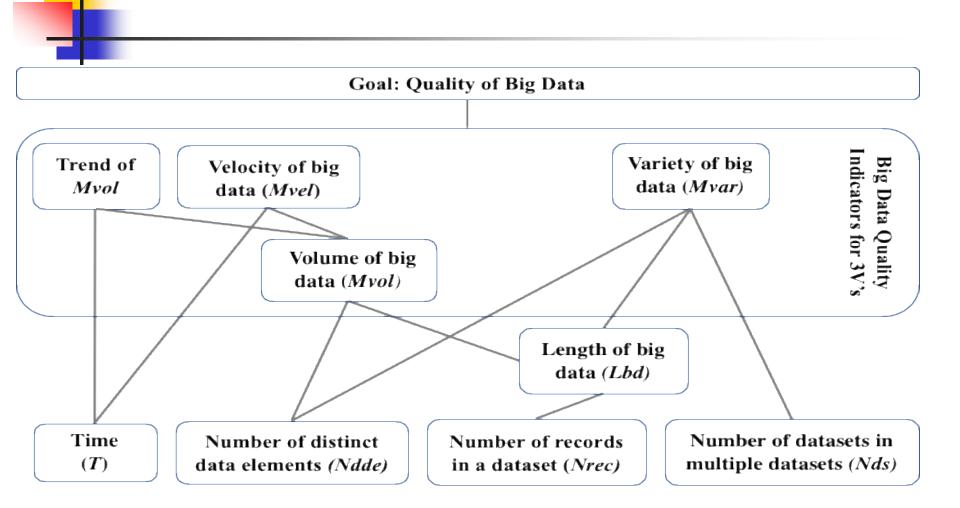
Derived Measures and Indicators

Length of Big Data (Ldb): the total number of records in MDS.

 $Lbd (MDS) = \sum \forall DS \in MDS \underline{Nrec} (DS)$

- Big Data Volume (Mvol): information content of multiple datasets
 - Mvol (MDS) = Lbd (MDS) log₂ (bin_dec (Ndde (DE)))
 - Trend of *Mvol* depicts graphically Volume of big data over time

Derived Measures and Indicators


Big Data Velocity (Mvel):

- relative growth of big data over a period of Time *T*
- $Mvel (MDS) = ((Mvol (MDS_{T2}) Mvol (MDS_{T1})) / Mvol (MDS_{T1}) *100$

Big Data Variety (Mvar).

• 3-tuple (Ndde (DE), Lbd (MDS), Nds (MDS))

Hierarchy of the 3V's Measures and Indicators

Agenda

- Quality of Big Data
- Research Goal
- Background and related work
 - Overview of our Approach to Big Data Quality Measurement
 - Big Data Characteristics Hierarchy: Relevance of NIST
- Proposed 3Vs measurement hierarchical model

Illustration and validation of the measurement model

Future work

Measurement Illustration (case 1)

Ndde =35 UIDs
Nrec = 20 UID_R
$Nds = 1 UID_{DST}$
$Lbd = 20 UID_{R}$
Mvol (MDS _{T1}) = $20\log_2(35) = 103$
information bits.

Age	Nationality	Own Pic/week	Exposure	Status/ week	Ratio
21	Saudi	7	High	3	0.1
19	Pakistan	2	High	12	5
33	Yemen	7	High	2	4
5	Saudi	2	High	7	0.1
19	Pakistan	2	Medium	12	3
25	Yemen	3	Medium	3	4
22	Saudi	7	Medium	7	0.1
33	Pakistan	8	Medium	8	5
21	Saudi	7	Medium	22	5
27	Saudi	8	Medium	33	1
22	Saudi	2	Low	22	7
26	Saudi	8	Low	2	2
21	Saudi	7	High	3	0.1
19	Pakistan	2	High	12	5
33	Yemen	7	High	2	4
35	Saudi	2	High	7	0.1
19	Pakistan	2	Medium	12	3
25	Yemen	3	Medium	3	4
22	Saudi	7	Medium	7	0.1
33	Pakistan	8	Medium	8	5

Measurement Illustration (case 2 - Additional Entries to the Sample Data)

Ndde =35 UIDs
$DE_{T1} = DE_{T2}$
$Nrec = 24 UID_R$
$Nds = 1 UID_{DST}$
Lbd (MDS _{T2}) =24 UID _R
Mvol (MDS $_{T2}$) =24log ₂ (35) =124
information bits.
Mvel (MDS) = (124 - 103)/ 103
*100 = 20.4%

Saudi Pakistan Yemen Saudi Pakistan Yemen Saudi	7 2 7 2 2 3	High High High High Medium	3 12 2 7	0.1 5 4 0.1
Yemen Saudi Pakistan Yemen	7 2 2	High High Medium	2 7	4
Saudi Pakistan Yemen	2 2	High Medium	7	
Pakistan Yemen	2	Medium		0.1
Yemen				
	3		12	3
Candi		Medium	3	4
Saudi	7	Medium	7	0.1
Pakistan	8	Medium	8	5
Saudi	7	Medium	22	5
Saudi	8	Medium	33	1
Saudi	2	Low	22	7
Saudi	8	Low	2	2
Saudi	7	High	3	0.1
Pakistan	2	High	12	5
Yemen	7	High	2	4
Saudi	2	High	7	0.1
Pakistan	2	Medium	12	3
Yemen	3	Medium	3	4
Saudi	7	Medium	7	0.1
Pakistan	8	Medium	8	5
	Saudi Saudi Saudi Saudi Saudi Pakistan Yemen Saudi Pakistan Yemen Saudi	Saudi7Saudi8Saudi2Saudi7Pakistan2Yemen7Saudi2Pakistan2Yemen3Saudi7	Saudi7MediumSaudi8MediumSaudi2LowSaudi8LowSaudi7HighPakistan2HighSaudi2HighSaudi2MediumPakistan2MediumYemen3MediumSaudi7Medium	Saudi7Medium22Saudi8Medium33Saudi2Low22Saudi8Low2Saudi7High3Pakistan2High12Yemen7High2Saudi2High12Yemen3Medium12Yemen3Medium3Saudi7Medium7

21	Saudi	7	Medium	22	5
27	Saudi	8	Medium	33	1
22	Saudi	2	Low	22	7
26	Saudi	8	Low	2	2

Mvar (MDS) is (35 data elements, 20 records, 1 dataset).

Validation of 3Vs

- Measurement validation is "the act or process of ensuring that (a measure) reliably predicts or assesses a quality factor"
- Two approaches to validation have been prescribed and practiced in software engineering: (a) theoretical validation, and (b) empirical validation (not in the scope of this paper)

Tracking and Consistency

- Mvol the more information big data contains (that is, the higher the information content of the big data), the larger the Mvol indicator value:
 - $Mvol (MDS_{T2}) > Mvol (MDS_{T1})$
- **Mvel** anticipated increase (20.4%)
- Mvar Mvar (MDS_{T2}) is (35 UID_E, 24 UID_R, 1 UID_{DST}), as expected, shows an increase in the MDS length parameter only (was 20 UID_R) as compared to Mvar (MDS_{T1})

Conclusions and Future Work

- A new measurement information model to quantify three aspects of Big Data – Volume, Variety, and Velocity
- Theoretical validation of these 3V's have been demonstrated.
- The model is suitable for big data in any forms of structured, unstructured, and semi-structured
- Empirical validation of these measures with openaccess data and industry data.
- The automation of the 3V's measurements

