
Specifying Feature-Dependent Maintainability
Requirements in an Operational Manner -

Results From a Case Study with Practitioners

Philipp Haindl and Reinhold Plösch

Institute of Business Informatics - Software Engineering
Johannes Kepler University

Linz, Austria
{philipp.haindl,reinhold.ploesch}@jku.at

Abstract. The TAICOS constraint language allows to express feature-
dependent non-functional requirements as quantitative constraints using
a compact set of time series operations, time filters, and comparison
operators. For each of these constraints, thresholds can be defined on
feature-level using metrical and ordinal scales. The fulfillment of these
constraints can be automatically evaluated throughout the engineering
cycle and shall support data-driven decision making for improving soft-
ware quality on feature-level.
In this paper we present the results of an empirical case study with
14 practitioners who formulated maintainability requirements using the
TAICOS constraint language for different features in an operational man-
ner. After formulating the constraints we asked the practitioners to rate
scope, expressiveness, and suitability of the constraint language and the
respective practical benefits and weaknesses of the language. Also, we
condensed nine recurrent maintainability aspects from the interviews
and analyzed which time series operations, filters, and data types the
practitioners used for each maintainability aspect.
The case study reveals that the constraint language is expressive, suit-
able, and its scope fully sufficient to specify maintainability requirements
on feature-level. Also, we observed that particularly the company spe-
cific modularization of software features has an impact on the suitability
of the constraint language. The practitioners positively highlighted the
ease of use, compactness, and understandability of the constraint lan-
guage and remarked that additional requirements engineering support is
essential to effectively utilize all language capabilities.

Keywords: Constraint Language · Maintainability Requirements ·
Quality Engineering · Quality Constraint Specification

1 Introduction

Software features not only need to fulfill different functional but also differ-
ent qualitative requirements, mainly depending on the features’ usage contexts
and engineering-related considerations of the manufacturer. As an example, the

Copyright © 2020 for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 



2 Haindl and Plösch

maintainability of a feature will likely be more important for a manufacturer if
the respective feature is frequently used by its customers, plays a vital role in an
important software product or is a core feature in a software product line. Like-
wise, in a mobile sports tracking app the feature calculating the runner’s pace
will demand high performance characteristics as even small performance lags
lead to incorrect calculation of the pace. Contrarily, the feature which uploads
the running route data after the run to a server can have more relaxed perfor-
mance requirements since performance lags do not negatively affect this feature’s
functionality. In many software projects often the most important threshold of a
non-functional requirement (NFR) is singled out among all features and defined
as the common threshold that must be met by all features. Consequently this
can lead to increased engineering effort to meet this common threshold for fea-
tures which could also suitably provide their functionality with a more relaxed
threshold. For instance, a software manufacturer might select the number of code
smells as an important indicator of maintainability and that shall be low.

To address this problem we presented the TAICOS quality model [11] that
allows to specify NFRs on the level of individual features and introduced the con-
cept of constraints to evaluate the fulfillment of feature-dependent NFRs quanti-
tatively. In this context, we understand a feature as a distinct functional unit of
work in a software system that satisfies a corresponding functional requirement.
We also presented an operational constraint language and a concrete runtime
framework [12] for it which allows to automatically evaluate the fulfillment of
feature-dependent NFRs in DevOps. The language defines the operationalization
of quantitative measures used in the constraints and concrete evaluation criteria
using individual thresholds for each feature. Particularly to ensure the suitability
of the constraint language in practical settings, it is vital that the language is
easily comprehensible for practitioners, provides the required language elements
for their purposes, and is sufficiently expressive to let them specify NFRs and
evaluation criteria for individual features.

This paper complements our previous work in this context and provides an
empirical validation of the constraint language in a case study with practition-
ers. We particularly asked practitioners from different companies and industry
sectors to use the constraint language to specify maintainability requirements
specific for their company in an operational manner. They were asked to define
the operational acquisition of measures for their maintainability requirements
as well as formulate concrete constraints which allow an operational evaluation
of these measures. Afterwards we conducted interviews with the participants to
examine their experiences.

The remainder of this paper is organized as follows. We give an overview of
related work and the demarcation of our approach to other works in Section 2.
In Section 3 we describe the research context and the study design to answer
the research questions. Following, in Section 4 we succinctly describe our con-
straint language before we present the results from our case study in Section 5.
We outline possible threats to the validity of these results in Section 6, before
concluding our paper and sketching relevant future work in Section 7.



Specifying Feature-Dependent Maintainability Requirements 3

2 Related Work

We separate the related work in this field into two streams of research. The
first stream covers studies examining specific quality factors of domain-specific
languages (DSLs). Haugen et al. [13] presented a structured questionnaire that
assesses three dimensions of DSLs - expressiveness, transparency, and formal-
ization. Merilinna and Parssinen [19] examined benefits when using DSL ap-
proaches in comparison with traditional approaches. In their work the authors
particularly investigated the differences in user abstraction when using either of
these approaches. Kosar et al. [16] compared program understanding between
general-purpose programming languages and DSL approaches using a cognitive
dimension framework and showed that program understanding is 15% better for
DSL approaches. Hermans et al. [14] performed an empirical case study using
questionnaires to identify six success factors of DSLs (e.g., learnability, usabil-
ity, expressiveness, reusability, development costs, and reliability). Johanson and
Hasselbring [15] elaborated on an empirical study that examines the potential
benefits of DSL approaches over general-purpose languages. The study was con-
ducted with domain experts who were not familiar with programming and they
were asked to perform representative tasks of their domain with a general pro-
gramming language and a DSL likewise. The validation quantitatively compared
the effectiveness and efficiency of both approaches and showed the DSL approach
being more accurate and requiring less time of the domain experts.

The second stream of relevant research pertains to empirical studies specifi-
cally examining the usability of DSLs. Concretely, the usability of a DSL is the
quality that makes it easy for users to understand, learn, and apply it [2,4,17].
Several studies [4,7,8,17,20,21] have shown that any difficulties in this context
might lead to higher maintenance effort of the textual artefacts developed with
this DSL. To evaluate the usability of DSLs, Albuquerque et al. [2] proposed an
approach based on the CDN (Cognitive Dimensions of Notations) framework [6].
The CDN framework defines several cognitive dimensions (e.g., consistency and
error-proneness) to thoroughly evaluate the usability of a written notation such
as DSLs. Most importantly, their research identified two main cognitive dimen-
sions that predominantly influence the usability of a DSL - expressiveness and
conciseness. In the CDN framework both dimensions are again subdivided into
eight subdimensions in total, which in fact allows a very detailed evaluation of
DSL usability for each subdimension. Barǐsić et al. [5] proposed an usability eval-
uation method for DSLs that complies with iterative user-centered evaluation
practices. This makes their approach especially applicable to repeatedly evaluate
a DSL and to resolve any usability insufficiencies early in the development cycle.
With the USE-ME framework, Barǐsić et al. [3] presented a dedicated framework
for DSL usability evaluation. It allows to model the context, goals, and evalua-
tion procedure of a DSL or tool under study in a formal way. For the validation
the authors conducted a case study in which participants needed to apply the
framework, followed by an interview subsequently. The results showed the cor-
rectness of the method also under limited time and understandability and overall
satisfaction with applying the framework from the participant’s perspective.



4 Haindl and Plösch

In this paper we present an empirical validation of several quality charac-
teristics of the TAICOS constraint language. These quality characteristics have
been identified by other authors as being relevant for the practical applicability,
usability, and suitability of DSLs, such as constraint languages. In our case study
we let practitioners apply the constraint language to formulate maintainability
requirements and thereby concretely examined (a) scope and expressiveness, (b)
suitability, (c) the context-dependent usage of language elements, and (d) ben-
efits and weaknesses of the constraint language.

3 Research Context and Study Design

The research presented in this paper complements our previous works [11,12]
in the context of specifying, measuring, and evaluating feature-dependent NFRs
and originated from an industrial cooperation with a large-scale software manu-
facturer. Given this industrial context, the guiding principle behind this research
was on developing a constraint language that is easily understandable and can be
applied by the different roles in industrial software projects. While we observed
the quantitative runtime characteristics of the different language elements in a
previous study [12], in this study we solely focus on the qualitative aspects of
the TAICOS language elements from a user perspective.

DSLs intend to provide language elements for expressing the requirements of
a specific problem domain, using the concepts suitable for that particular domain
[18]. In the context of this study, this means assessing whether the TAICOS con-
straint language supports the concepts that are suitable from a user perspective
to express maintainability requirements on feature-level. A particular benefit of
DSLs is that they help their users raise the level of abstraction up to a level
that is suitable to solve their problems more effectively than general-purpose
languages, which in turn more actively and productively engages users in the
software development process [2]. Obviously, the degree that the TAICOS con-
straint language fulfills these aspects can only empirically be answered with the
help of domain experts that concretely apply the language for their maintainabil-
ity requirements. As suggested by Fabre et al. [9], an empirical validation of DSLs
shall take qualitative data, e.g., users’ feedback after applying the language, but
also quantitative data, e.g., context-dependent usage of language elements to
detect typical usage patterns, into account.

3.1 Case Study Design

To gather post-usage quantitative and qualitative feedback about the constraint
language from practitioners, we designed our case study to consist of three con-
secutive parts - an introductory, a practical, and an interview part.

Introductory Part. At the beginning, we gave the practitioners a succinct
introduction into the TAICOS constraint language, i.e., the overall objective of
the language and the individual purpose and functionality of each language el-
ement (cf. Section 4). Concretely we showed them how the TAICOS language



Specifying Feature-Dependent Maintainability Requirements 5

allows to define the acquisition of measures for NFRs using instruments, select
appropriate data types for measures, and to refine the evaluation of measures
as constraints on feature-level. The practitioners were asked to raise questions
during this presentations in case of any difficulties of understanding.

Practical Part. Following, the practitioners had to select three features of a
single software product in their companies, whereby it was important that the
selected features differ in their qualitative requirements, e.g., that individual
maintainability requirements were slightly higher for one feature and more re-
laxed for another. We then asked the practitioners to define five maintainability
requirements in a qualitative manner typical for their companies and relevant for
these features. An illustrative maintainability requirement for this task would
be that the number of code smells must be low.

The practitioners then used these qualitative maintainability requirements to
define quantatitive measures and specify constraints for each feature in an oper-
ational manner. To accomplish this task they needed to (a) define an instrument
to acquire a measure, (b) select a data type to hold this measure in a variable,
(c) decide whether a maintainability requirement needs to regard the historical
development of this measure and thus requires a times series operation and time
filter, (d) select a comparison operator and define a threshold for this constraint.
We explicitly did not help the practitioners in formulating the constraints in
any way, but provided them the introductory slides as these already contained
all necessary information to solve that task. The formulation of constraints was
repeated until each resulting constraint was formally correct.

Interview Part. For the interviews after the practical part we designed a
questionnaire based on the guidelines of Runeson and Höst [22]. As suggested
by Yin [24] we also conducted a pilot interview with one highly experienced
expert and included the gathered feedback to improve the questionnaire itself.
As a result from the pilot interview we refined certain rating scores of language
elements to assure a clear understanding of the answering possibilities.

The questionnaire comprised 10 open questions and 13 closed questions on
a 4-point Likert scale and was separated into three parts: The first part cap-
tured industry sector of the participant’s company, roles in projects, and years
of experience with software engineering. In the second part, the participants
rated different quality aspects such as suitability, expressiveness, and scope of
the individual language elements questions. The open questions additionally in-
tended to examine benefits, challenges, drawbacks, and practical considerations
regarding suitability and applicability of the constraint language in the compa-
nies of the practitioners. Finally, in the third part, we showed the practitioners
how constraint evaluation results of a popular messenger app are visualized on
feature-level using the TAICOS web application. The answers to these questions
serve as preliminary feedback for the continuing improvement of this application
and will be presented in another paper.

We conducted 14 face-to-face interviews with software testers, quality man-
agers, software architects and senior software engineers, DevOps engineers, and



6 Haindl and Plösch

cross-check
(RQ1)

cross-check
(RQ2)

cross-check
(RQ3)

cross-check
(RQ4)

Researcher

Senior
Researcher 1

interview
transcripts

coding and
extraction

statements, ratings,
formulated constraints

combined
statements

combined 
formulated
constraints

combined 
ratings 

Senior
Researcher 2

iterative 
refinement

iterative 
refinement

iterative 
refinement

final codes

final ratings

final language 
element usage 

cross-check 
and validation

Fig. 1: Research process for iteratively deriving final codes, ratings, and usage
frequency of individual language elements (adapted from [23]).

software development training experts from different companies in Austria and
Germany. The participants’ companies have a median employee count of 900
and ranged from small enterprises to companies with more than 100000 employ-
ees. Industry sectors comprise public administration, banking, commerce, soft-
ware consulting, property management, electronic engineering, automotive, and
software product manufacturing. The participants have an average of 14 years
professional experience with software engineering and each participant typically
helds multiple roles in the projects. The primary roles of the participants are
software development (33%), software architecture (28%), test and quality man-
agement (17%), technology training (11%), and software R&D (11%).

3.2 Research Questions

The case study seeks to answer the following four research questions:

– RQ1: Are scope and expressiveness of the TAICOS constraint lan-
guage appropriate to specify feature-dependent maintainability re-
quirements? We refined this research question into two subquestions.

• RQ1.1: Are the individual constraint language elements sufficiently ex-
pressive to define feature-dependent maintainability requirements? This
question focuses on the expressiveness, i.e., the semantic preciseness and
clarity, of the language elements for the user.

• RQ1.2: Is the scope of the individual constraint language elements appro-
priate to specify feature-dependent maintainability requirements? This
question examines whether the language elements appropriately cover
the required functionality to express maintainability requirements.



Specifying Feature-Dependent Maintainability Requirements 7

– RQ2: Is the TAICOS constraint language suitable to specify feature-
dependent maintainability requirements? While the previous research
question focused on the individual language elements, this research question
asks whether the combination of the different language elements is suitable
for expressing maintainability requirements.

– RQ3: What are typical usage patterns of the TAICOS constraint
language depending on the maintainability aspect addressed in a
constraint? This analysis is particularly important for further improving
the constraint language as it makes the users’ implicit understanding of the
language and possible deficiencies, such as missing language elements, more
tangible [9].

– RQ4: What are benefits and weaknesses of using the TAICOS con-
straint language for specifying feature-dependent maintainability
requirements? This question seeks to identify the benefits, challenges, and
weak spots of the constraint language and shows limitations of the language
and sketches possible directions for its further improvement.

3.3 Data Analysis Procedure

Each interview took between 90 and 120 minutes and was conducted and tran-
scribed by one researcher. Following, the interview transcripts were analyzed by
two researchers and the answers to the closed questions codified quantitatively.
The answers to the open questions where coded in the transcripts but no qual-
itative data extracted at that point. We waited to categorize the statements
until all interviews were conducted to ensure that we do not exclude potentially
relevant qualitative data from the start. Figure 1 shows the research process we
followed for the data analysis of the interviews and the formulated constraints.

Then the qualitative statements were categorized by two researchers con-
jointly following a grounded theory [1,10] approach. The objective of this step
was to assign each statement meaningfully to a category and we iteratively re-
fined these categories and combined similiar statements whenever appropriate.
The refinement and coding was repeated until consensus was reached among the
two researchers. In addition, a second senior researcher monitored the process
and cross-checked the coded transcripts but was not involved in the transcription
of the interviews itself.

We coded the formulated constraints solely quantitatively, whereby we ex-
tracted the concrete language elements, their metadata, and the maintainability
aspect that the constraint was formulated for. Similar to the answers to the
open questions we refined the extracted maintainability aspects iteratively until
consensus was reached among the two researchers.

In total, we extracted 397 statements (28 on average per interview) from
the 14 interviews. After several iterations we condensed 43 categories out of
the qualitative statements. Finally, we identified nine recurring maintainability
aspects from the formulated constraints. Our aggregated findings from analyzing
the interviews and the formulated constraints are presented in Section 5.



8 Haindl and Plösch

4 TAICOS Constraint Language

In this section we give a short introduction to the TAICOS constraint language
to the extent necessary for the further understanding of the paper. For a more
comprehensive presentation of the language’s grammar and syntax we refer to
our other publication [12]. Basically, the TAICOS constraint language is a DSL
for specifying feature-dependent NFRs in an operational manner using quanti-
tative measures and fulfillment criteria. The language is conceptually based on
the extended QUAMOCO meta quality model [11] and distinguishes between
features, for which individual constraints can be defined, and instruments, which
acquire measures from external systems and make them accessible as variables in
the constraints. Interests reflect coarse-grained qualitative objectives that must
be taken into account by all features, e.g., that the number of code smells must
be low. These objectives are refined on feature-level as quantifiable constraints,
i.e., with a concrete threshold of acceptable code smells for each individual fea-
ture. The number of code smells can be directly acquired through an instrument
that queries this measure from a dedicated code quality server, e.g., SonarQube.
To also evaluate the development of a measure over time, the TAICOS constraint
language provides time filters and basic operations for time series.

4.1 Language Elements

Following, we elaborate the relevant elements of the TAICOS constraint language
used in this case study in more detail. Also, we highlight important keywords and
language examples in the text that shall support its better understanding.

Instruments. Represent connectors to external systems that retrieve a spe-
cific measure from an external system using predefined software interfaces. To
integrate further measures that are relevant for specifying NFRs, the set of in-
struments can easily be extended by implementing certain software interfaces.

Variables and Data Types. The value retrieved from an instrument can
be assigned to a variable. When declaring a variable, the user also defines its
data type and the corresponding instrument. The language allows three data
types for variables: measure for numerical metrics, rule for the number of rule
violations, and rating for 1-letter quality ratings on a scale from A to E. The
type of a variable also imposes restrictions on the use of time series operations
and comparison operators. Time series operations are only possible for numerical
data, i.e., for variables with a declared type measure or rule. Also, the comparison
of a variable’s value with a threshold value inevitably requires that both values
are of the same type.

The name of a variable can be arbitrarily chosen and also be reused for dif-
ferent constraints and features. This allows to use them very flexible similar to a
programming language. For instance, one could declare a variable codeSmells for
the above example as codeSmells as measure from Sonar("codeSmells"). This
expresses that the numeric variable codeSmells is acquired from the SonarQube
instrument, which accesses it using the key codeSmells from that system.



Specifying Feature-Dependent Maintainability Requirements 9

Time Series Operations and Time Filters. Particularly to analyze the
development of a measure over time, our language provides five time series op-
erations: min, max, median, avg, and the (linear regression) gradient of the time
series. The relevant time frame to obtain the time series of a measure is speci-
fied by time filters. Our constraint language provides the three time filters days,
weeks, months with a numerical parameter indicating the number of time units
to go backwards in time.

Constraints. A constraint refines how a specific interest can be individually
regarded by a feature. It defines quantitative fulfillment criteria so that the
declared variable, hereon applied time series operations and time filters, can be
compared with a threshold value. We differentiate three types of constraints:

(a) Constraints comparing the most recent value of a variable with
a threshold. This is the simplest type of constraint and works with any
type of variable. The constraint SearchFriends: cyclomaticComplexity < 8
for instance requires the cyclomatic complexity of the feature SearchFriends
to be lower than 8.

(b) Constraints utilizing benchmark results of rule violations. This con-
straints evaluates whether the number of rule violations lying within a spe-
cific quartile of the benchmark base. It requires a variable of type rule and
is declared by appending .benchmark to the variable name. The expression
undocumentedMthds as rule from Sonar("squid:UndocumentedApi") defines a
variable undocumentedMthds to hold the number of undocumented meth-
ods. The constraint SearchFriends: undocumentedMthds.benchmark < Q50 de-
mands that the number of rule violations in the SearchFriends feature is
lower than in 50% of the benchmarked projects.

(c) Constraints comparing the result of a time series operation with a
threshold. Such constraints can only be expressed for numerical variables,
i.e., of type measure or rule. They require a concrete time series operation and
a time filter to be specified in the constraint. For instance, the constraint
SearchFriends: median(cyclomaticComplexity, days(7)) < 12 demands that
the median cyclomatic complexity of this feature must not have been greater
than or equal to 12 in the last 7 days.

Comparison Operators and Thresholds The constraint language supports
comparison operators such as <,>,>=,<=, and ==. Thresholds can be specified
using metrical values without unit of measurement, e.g., the number of rule
violations, or ordinal scaled values, such as e.g., Q25 - Q100 to express quartiles.

5 Case Study Results

During the practical part of the case study, the participants formulated 222
feature-dependent constraints for their company-specific maintainability require-
ments with our constraint language. In the following we present the detailed
results from our case study sequentially with the research questions.



10 Haindl and Plösch

5.1 Scope and Expressiveness (RQ1)

Figure 2 illustrates that the participants consistently rated the scope of the lan-
guage elements positively, either being sufficient or fully complete for specifying
maintainability requirements on feature-level. In the Likert scale for rating the
scope we particularly differentiated between the scores overcharged (i.e., not all
language elements are relevant), fully complete (i.e., no further elements shall be
added), sufficient (i.e., further non-critical language elements need to be added
for more complex requirements), and not sufficient (i.e., critical language ele-
ments are missing). No participant rated the scope of any language element to
not be sufficient for specifying maintainability requirements on feature-level.

8 6

11 3

9 5

1 12 1

Comparison
Operators

Thresholds

Time Filters

Time Series
Operations

0 5 10 15
Rating Response Count

Overcharged Fully Complete Sufficient Not Sufficient

Scope

Fig. 2: Ratings of the Scope of the Language Elements.

Among the language elements, the scope of time series operations and thresh-
olds were rated by most practitioners as being fully complete (12 and 11 ratings
respectively). One participant rating the scope of time series operations as over-
charged argued that “for rule violations and quality violations in general, average
and median operations are questionable, as they must never be any violations.
The number of violations always must be zero”. This participant also mentioned
that “this is not a limitation of the language by itself, since it does not force me
to apply these operations in all contexts”. The one participant rating the scope
of time series operations as sufficient mentioned the sum operator as important
for his projects, which the language currently does not provide. Five participants
mentioned that sprints/program increments, time intervals, quartals, hours, and
the number of certain events would be further relevant time filters for them.
Three participants responded that they would also like to express thresholds us-
ing enumerations and intervals. Six participants mentioned boolean, similarity,
and set operators as well as operators for expressing much larger/smaller than
as further relevant comparison operators.

The analysis of the participants’ rating of the expressiveness of the language
elements draws a similar picture. As shown in Figure 3 the vast majority of
participants rated the expressiveness of the elements as very good. No participant
rated the expressiveness as not sufficient. We also observed that participants who
rated the scope as sufficient and elaborated missing language elements in turn
also rated the expressiveness on a lower score.



Specifying Feature-Dependent Maintainability Requirements 11

11 1 2

10 2 2

11 2 1

12 2

Comparison
Operators

Thresholds

Time Filters

Time Series
Operations

0 5 10 15
Rating Response Count

Very Good Good Sufficient Not Sufficient

Expressiveness

Fig. 3: Ratings of the Expressiveness of the Language Elements.

5.2 Suitability (RQ2)

We also asked the participants to rate the suitability of the TAICOS constraint
language on a 4-point Likert scale and to justify their answers. Thereby we
intentionally did not differentiate between individual language elements, as the
language’s suitability cannot be meaningfully answered on this isolated level.

7 5 2

0 5 10 15
Rating Response Count

Suitable Rather Suitable Rather Not Suitable Not Suitable

Suitability

Fig. 4: Suitability of the Constraint Language.

As depicted in Figure 4, a majority of 12 participants positively rated the
constraint language as either suitable or rather suitable. However, two partic-
ipants rated the language as rather not suitable. They argued that due to the
modularization of the features in their companies and their product-specific reuse
it would be difficult to define meaningful constraints on feature-level. Also they
stressed that, given a number of over 400 features in an average software prod-
uct of their companies, it would be essential for them to rather define general
constraints for all features and only exceptions from these general constraints.
Though, both participants did not question the value of the constraint language
itself, and accentuated that these additional requirements towards the language
relate to their industry sectors (automotive and electronic engineering).

5.3 Language Usage Patterns per Maintainability Aspect (RQ3)

To answer this research question, we qualitatively coded the maintainability as-
pect addressed in a constraint and also extracted the quantitative data which
language elements have been used in the constraint. The objective of this re-
search question was to identify the typical usage patterns of the constraint lan-
guage for the different maintainability aspects. During the final analysis of the
data, we then condensed nine maintainability aspects that have repeatedly been



12 Haindl and Plösch

choosen by the participants to formulate constraints for. Concretely we con-
densed the following maintainability aspects: technical debt (54 constraints), se-
curity ratings and vulnerabilities (6 constraints), readability of variables, method
and class names (24 constraints), object-oriented design (12 constraints), depen-
dencies such as cyclic class and external framework dependencies (9 constraints),
correctness reflected through test code coverage, bug counts, or code assertions
(54 constraints), documentation (21 constraints), cognitive and cyclomatic com-
plexity (24 constraints), and coding style (18 constraints).

To allow a meaningful comparison of the language elements, we normalized
their usage frequency on the level of subelements, i.e., for each individual data
type, time series operation, and time filter.

Usage Patterns of Data Types. In Figure 5 we illustrate which data types
have typically been used in constraints to address different maintainability as-
pects. It can be depicted that the measure data type is most intensively used for
constraints targeting on technical debt and correctness. Variables of type rule
dominate in documentation and coding style constraints, whereas rating vari-
ables are primarily used for technical debt and security constraints. In total,
we counted 49 measure, 20 rule, 6 rating usages among all interviews once per
maintainability aspect.

measure rule rating

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

Coding Style
Complexity

Correctness
Dependencies

Documentation
OO Design
Readability

Security
Technical Debt

Normalized Frequency

Variable Data Types

Fig. 5: Usage Patterns of Data Types.

Usage Patterns of Time Series Operations. Figure 6 shows how the par-
ticipants applied the time series operations for the 9 extracted maintainability
aspects. Interestingly, the min operation solely was used to address correctness,
e.g., that a minimum of test coverage must be reached or a certain number of
code assertations must be in place. The max operations primarily was used to as-
certain that the technical debt not exceeds a certain threshold. Similarly, the avg
operation was additionally used for readability constraints and to address cor-
rectness concerns. The median operation only was used for two maintainability
aspects: readability and correctness.

Another interesting finding is that the gradient operation was evenly used for
the majority of maintainability aspects. A similar usage pattern is also notice-
able for the benchmark operation, which was also evenly used but for a smaller
set of maintainability aspects. We also observed that participants never used



Specifying Feature-Dependent Maintainability Requirements 13

time series operations in constraints for object-oriented design, but instead for
this purpose solely relied on constraints that compare the most recent value of a
variable with a threshold (cf. Section 4.1, type a). In total, we counted 5 min, 13
max, 11 avg, 2 median, 17 gradient, and 5 benchmark usages among all interviews
once per maintainability aspect.

median gradient benchmark

min max avg

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Coding Style
Complexity

Correctness
Dependencies

Documentation
OO Design
Readability

Security
Technical Debt

Coding Style
Complexity

Correctness
Dependencies

Documentation
OO Design
Readability

Security
Technical Debt

Normalized Frequency

Time Series Operations

Fig. 6: Usage Patterns of Time Series Operations.

Usage Patterns of Time Filters. Lastly, in Figure 7 we visualize the results
from analyzing the usage patterns of time filters in the context of the differ-
ent maintainability aspects. The days filter was intensively used for constraints
addressing correctness or technical debt and in a very similar way as the weeks
filter. In constrast to these filters, the months filter was used more evenly also
for other maintainability aspects, but predominantly for constraints addressing
technical debt, readability, and correctness. In total, we counted 7 days, 20 weeks,
and 20 months usages among all interviews once per maintainability aspect.

days weeks months

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

Coding Style
Complexity

Correctness
Dependencies

Documentation
OO Design
Readability

Security
Technical Debt

Normalized Frequency

Time Filters

Fig. 7: Usage Patterns of Time Filters.



14 Haindl and Plösch

5.4 Benefits and Weaknesses (RQ4)

Lastly we asked the participants to elaborate on the perceived benefits and weak-
nesses of the TAICOS constraint language. We qualitatively analyzed their state-
ments and summarize them as follows: Respectively, five participants marked the
ease of use and its compactness as benefits of the language, with one emphasizing
that “the language could be applied as it is with little effort”. Three participants
highlighted the understandability and two mentioned the conceptual separation
of instrument and constraint as a benefit of the language. They explained that
this separation would allow to exchange instruments easily and also makes the
source of a variable and its acquisition more explicit for the user of the language.

Asked about the weaknesses of the language, two participants responded
that additional methodological requirements engineering support is essential to
effectively utilize all language capabilities throughout the product lifecycle. One
participant each critized the scope of features, i.e., their definition based on di-
rectories and files, the required formal understanding to apply the language, the
inability to define default thresholds for features and exceptions, and scalability
issues without tool support for large numbers of features and constraints.

6 Threats to Validity

We see a threat to construct validity in the different interpretation of the
questions by the participants, which is mainly due to their different roles and
experiences. We addressed this threat by showing each participant concrete def-
initions of the terminology and discussed any ambiguities. When summarizing
their statements, we also considered background and role of each practitioner to
determine from what view and with what intention the statement was given.

The foremost threat to internal validity can be seen in the participants’
individual understanding of the language elements, which became apparent when
they formulated the constraints. We regard this threat as negligible because as
soon as we noticed any uncertainties about the language elements we showed
their defintion and asked follow-up question to ascertain that the participant
understood correctly.

Also, researcher-biased judgments are possible during data extraction and
analysis of the interview transcripts, i.e., which codes are derived and refined
thereof. We mitigated this threat by discussing the extraction and refinement of
the codes among both researchers until we agreed on a solid set of codes.

We addressed the threat to external validity by selecting experts who op-
erate in different companies and industry sectors, and also selected two experts
maximum per company. However, we see a threat to the generalizability of the
results to other industries due to their different maintainability requirements.

7 Conclusion and Future Work

In this paper we presented the results of an empirical case study with 14 prac-
titioners to examine the scope, expressiveness, and suitability, benefits, and



Specifying Feature-Dependent Maintainability Requirements 15

weaknesses of the TAICOS constraint language for specifying feature-dependent
maintainability requirements. The practitioners specified these maintainability
requirements in an operational manner, i.e., the operational acquisition of main-
tainability measures as well as operational evaluation criteria on feature-level.

In total, the participants formulated 222 feature-dependent maintainability
constraints. The majority of participants positively rated the scope of the lan-
guage elements as fully complete to specify feature-dependent maintainability
requirements, with no rating as not sufficient. Similarly, the vast majority of
participants rated the expressiveness of the language elements as very good.
Overall, 12 participants rated the language as suitable or rather suitable. Two
participants argued that due to the modularization and product-specific reuse
of features in their companies, the language is rather not suitable in their com-
panies, i.e., automotive and electronic engineering.

We also condensed nine recurring maintainability aspects from the formu-
lated constraints and analyzed the usage patterns of the language elements
depending on the addressed maintainability aspect. The participants predom-
inantly declared metrical variables of type measure, particularly to specify con-
straints evaluating the correctness of features. When analyzing time series of
measures, participants frequently used the gradient operation evenly for all as-
pects and the avg operation particulary for evaluating technical debt. Partici-
pants preferably selected the weeks or months time filter to specify time frames,
particulary in the context of correctness, readability, and technical debt.

Future work shall specially concentrate on developing advanced time filters,
set-based comparison operators, tool support for large constraint specifications
and on providing methodological requirements engineering support for feature-
dependent requirements elicitation and constraint specification.

References
1. Adolph, S., Hall, W., Kruchten, P.: Using grounded theory to study the experience

of software development. Empirical Software Engineering 16(4), 487–513 (2011).
2. Albuquerque, D., Cafeo, B., Garcia, A., Barbosa, S., Abrahão, S., Ribeiro, A.:

Quantifying usability of domain-specific languages: An empirical study on software
maintenance. Journal of Systems and Software 101, 245–259 (2015).

3. Barǐsić, A., Amaral, V., Goulão, M.: Usability driven DSL development with USE-
ME. Computer Languages, Systems & Structures 51, 118–157 (2018).

4. Barǐsić, A., Amaral, V., Goulão, M., Barroca, B.: Quality in use of DSLs: current
evaluation methods (2011)

5. Barǐsić, A., Amaral, V., Goulão, M., Barroca, B.: Evaluating the Usability of
Domain-Specific Languages Information. In: Software Design and Development:
Concepts, Methodologies, Tools, and Applications, pp. 2120–2141. IGI Global
(2014)

6. Blackwell, A.F., Britton, C., Cox, A., Green, T.R.G., Gurr, C., Kadoda, G., Kutar,
M.S., Loomes, M., Nehaniv, C.L., Petre, M., Roast, C., Roe, C., Wong, A., Young,
R.M.: Cognitive Dimensions of Notations: Design Tools for Cognitive Technology.
In: Beynon, M., Nehaniv, C.L., Dautenhahn, K. (eds.) Cognitive Technology: In-
struments of Mind. pp. 325–341. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (2001)



16 Haindl and Plösch

7. Deursen, A., Klint, P.: Little languages: little maintenance? Technical Report, CWI
(Centre for Mathematics and Computer Science), NLD (1997)

8. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Notices 35(6), 26–36 (2000).

9. Favre, J.M., Gasevic, D., Lämmel, R., Pek, E.: Empirical Language Analysis in
Software Linguistics. In: Malloy, B., Staab, S., van den Brand, M. (eds.) Software
Language Engineering. pp. 316–326. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (2011)

10. Glaser, B., Strauss, A.: The Discovery of Grounded Theory: Strategies for Quali-
tative Research. Routledge, New Brunswick (2000)

11. Haindl, P., Plösch, R., Körner, C.: An Extension of the QUAMOCO Quality Model
to Specify and Evaluate Feature-Dependent Non-Functional Requirements. In:
2019 45th Euromicro Conference on Software Engineering and Advanced Appli-
cations (SEAA). pp. 19–28. IEEE, Kallithea-Chalkidiki, Greece (2019).

12. Haindl, P., Plösch, R., Körner, C.: An Operational Constraint Language To Eval-
uate Feature-Dependent Non-Functional Requirements. In: 2020 46th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). accepted
for publication. IEEE, Portorož, Slovenia (2020)

13. Haugen, y., Mohagheghi, P.: A multi-dimensional framework for characterizing do-
main specific languages. In: Proceeding of the 7th OOPSLA Workshop on Domain
Specific Modeling (2007)

14. Hermans, F., Pinzger, M., van Deursen, A.: Domain-Specific Languages in Practice:
A User Study on the Success Factors. In: Schürr, A., Selic, B. (eds.) Model Driven
Engineering Languages and Systems. pp. 423–437. Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg (2009)

15. Johanson, A.N., Hasselbring, W.: Effectiveness and efficiency of a domain-specific
language for high-performance marine ecosystem simulation: a controlled experi-
ment. Empirical Software Engineering 22(4), 2206–2236 (2017).

16. Kosar, T., Oliveira, N., Mernik, M., João, M., Pereira, M., Repinšek, M., Cruz,
D., Rangel Henriques, P.: Comparing General-Purpose and Domain-Specific Lan-
guages: An Empirical Study. Computer Science & Information Systems 438 (2010).

17. Langlois, B., Jitia, C., Jouenne, E.: DSL Classification (2007)
18. Le, D., Dang, D., Nguyen, V.: On domain driven design using annotation-based

domain specific language. Comp. Lang., Systems & Structures 54, 199–235 (2018).
19. Merilinna, J., Parssinen, J.: Comparison between different abstraction level pro-

gramming: experiment definition and initial results. Montreal, Canada (2007)
20. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific

languages. ACM Computing Surveys 37(4), 316–344 (2005).
21. Nishino, H.: How can a DSL for expert end-users be designed for better usability? a

case study in computer music. In: CHI ’12 Extended Abstracts on Human Factors
in Computing Systems. pp. 2673–2678. CHI EA ’12, Association for Computing
Machinery, Austin, Texas, USA (2012).

22. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14(2), 131–164 (2009).

23. Vierhauser, M., Rabiser, R., Grünbacher, P.: A Case Study on Testing, Com-
missioning, and Operation of Very-large-scale Software Systems. In: Companion
Proceedings of the 36th International Conference on Software Engineering. pp.
125–134. ICSE Companion 2014, ACM, New York, NY, USA (2014).

24. Yin, R.K.: Case Study Research and Applications: Design and Methods. SAGE
Publications, Inc, Los Angeles, 6th edn. (2017)


	Specifying Feature-Dependent Maintainability Requirements in an Operational Manner - Results From a Case Study with Practitioners
	1 Introduction
	2 Related Work
	3 Research Context and Study Design
	3.1 Case Study Design
	3.2 Research Questions
	3.3 Data Analysis Procedure

	4 TAICOS Constraint Language
	4.1 Language Elements

	5 Case Study Results
	5.1 Scope and Expressiveness (RQ1)
	5.2 Suitability (RQ2)
	5.3 Language Usage Patterns per Maintainability Aspect (RQ3)
	5.4 Benefits and Weaknesses (RQ4)

	6 Threats to Validity
	7 Conclusion and Future Work


