COSMIC FSM ADOPTION AT EUROFINS

IWSM 2019

Aravind Gundurao
Usha N
Let’s regroup post Lunch...

Form a group with following rules

• The group should contain the card sequence from A to 10

• The group should comprise of people with the same sign card

• Team which form the group first give a cheer!!
1. History behind COSMIC Adoption
2. The journey of COSMIC Implementation @Eurofins
3. Challenges and learnings
A little bit about me…

Engineering Leader @ Eurofins
Healthcare IT and Life Sciences

Sport Enthusiast with Family Ethos
We are a global life sciences company helping clients with a range of analytical testing

- Eurofins Scientific is an international life sciences company with more 30 years of experience in providing a unique range of analytical testing services to clients across multiple industries
- Over €4 billion in annualized revenues
- Around 45000 employees and more than 400 million tests performed year
- An international network of more than 800 laboratories across 47 countries in Europe, North and South America and Asia-Pacific
- A portfolio of over 200,000 validated analytical methods
- 1,250,000 m² of laboratories
- Growing IT Systems and Solutions

Customer Focus, Quality, Competence & Team Spirit and Integrity
How to make IT a better deal to Business

<table>
<thead>
<tr>
<th>Situation</th>
<th>Complication</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Improve the predictability of software releases</td>
<td>• Teams with varied degree of software delivery Maturity</td>
<td>• There is a need to have common unit of Measure for delivered software</td>
</tr>
<tr>
<td>2. Compare Productivity of Project teams</td>
<td>• Agility as excuse. Story point not an absolute unit</td>
<td>• Based on Industry standards</td>
</tr>
<tr>
<td>3. Quick and Early estimation for new projects</td>
<td>• Business requirements not well structured</td>
<td>• Comparable across project types</td>
</tr>
<tr>
<td>4. Business-IT Alignment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Situation:
 1. Improve the predictability of software releases
 2. Compare Productivity of Project teams
 3. Quick and Early estimation for new projects
 4. Business-IT Alignment

- Complication:
 - Teams with varied degree of software delivery Maturity
 - Agility as excuse. Story point not an absolute unit
 - Business requirements not well structured

- Resolution:
 - There is a need to have common unit of Measure for delivered software
 - Based on Industry standards
 - Comparable across project types
We wanted a method to consistently measure the developed software for Baselining and Benchmarking

Approach
- Cross functional Special Interest Group formed
- AS-IS Mapping of selected Projects @ Eurofins
- Analyzed different FSM methods
- Map analyzed FSM methods to best Fit to Eurofins organization

Considered for pilot
- Parameters for relative evaluation of methods
- 50% of Program leadership interviewed
- COSMIC FP, IFPUG FPA, FiSMA, Agile SP were the analyzed FSM methods

Decision to use COSMIC
- Best fit on parameters relevant to Eurofins situation
- Easy to adopt, cost-effective to implement, scientific in nature
Definition of Cosmic FP Model per ISO/IEC 19761:2011

- **Software Context Model**: Characterize a piece of software measured
- **Generic Software Model**: How FUR of the software to be measured are modeled, so that can be measured

Diagram Notes:
- **E**: Entry Movement of a data group
- **X**: Exit Movement of a data group
- **R**: Read a data group from Persistent store
- **W**: Write a data group to Persistent store
We faced many challenges during the implementation

| Development | • How to build the Model to measure software and for early estimation
| | • Model that closely map to Organization practice |
| Process | • Different Project development and delivery practice followed
| | • FUR vs Functional Process across project types
| | • How to categorize the project types |
| Resources | • Adopting in Agile teams – Mindset of team members
| | • Teams were busy with the project delivery |
| Governance and Methodology | • Who will measure the software and estimate the software
| | • Right governance model for consistent adoption and feedback |
We observed key benefits

Benefits

- Higher level of Accuracy compared to Agile Story Points
- Benchmarking results allude to higher degree of correlation among projects
- KPI's with Common unit of measure
- Could be adopted across the different projects at Eurofins

Impact

- Productivity comparison for better project performance of development and enhancement projects
- Improvement in estimation thought process (Intangible)
- Reduced inconsistencies in KPI measurement and baselines
We are ready for Organization wide Adoption

Models serve as blueprint for understanding and adoption

- Templates for
 - CFP Measurement
 - Approximate Estimation
 - Calibration of baselines

- Classroom and Online Trainings
- Methodology well understood

Evolving guideline for continuous process improvement

- COSMIC FP Measurement Manual
- Checklist for measurement process audit.
- Governance Model

Independent Measurement Team
- 8 Pilots with New Development and Enhancement

Measurement could be done unbiased by central team

I know what is expected of the model – I agree with it, and it is meaningful
Minimal disruption to current development practice and minimal involvement from Project teams

COSMIC FP Pilot

BUILD
- Build the Model for measurement and benchmarking
- Build the model for Approximate Estimation
- Develop measurement guidelines

IDENTIFY
- Identify Pilot projects for feasibility and correlation
- Projects from across the business lines for diversity

IMPLEMENT
- Measurement with project team involvement
- Measurement with independent measurer
- Insights and improvements from both the approaches
Mapping for COSMIC FP to Organization defined practice

Purpose: Measuring for benchmarking and subsequent baselining

Scope: Measure the size at the Application level

Granularity: Measurement at User story level Approximate at User Requirement (UR) level

Functional Area (FA): UR/ Epic

Functional User Requirement (FUR): User Story or Stories

Functional Process: Workflow within a story

Data Group: Data Model/ Entity
CFP Correlates better than Agile SP for similar project measurement

Project 1D

- Linear (Person Hours)

 \[y = 6.0052x + 4.7681 \]

 \[R^2 = 0.7716 \]

- Linear (Story Points)

 \[y = 6.315x + 0.3728 \]

 \[R^2 = 0.7708 \]

Project 2D

- Linear (Person Hours)

 \[y = 6.315x + 0.3728 \]

 \[R^2 = 0.7708 \]

- Linear (Story Points)

 \[y = 4.2263x + 18.647 \]

 \[R^2 = 0.5762 \]

- Linear (Man Hours)

 \[y = 11.093x - 1.5347 \]

 \[R^2 = 0.6688 \]
CFP Correlates better than Agile SP for similar project measurement

• Each dot represent the measured functional user requirement
• Higher R^2 value meant better clustering leading to higher predictability
• CFP is more linear in nature
Model - Development

\[y = 4.789x + 12.234 \]
\[R^2 = 0.645 \]

Performance Baseline

<table>
<thead>
<tr>
<th></th>
<th>P5</th>
<th>P10</th>
<th>P20</th>
<th>P30</th>
<th>P40</th>
<th>P50</th>
<th>P60</th>
<th>P65</th>
<th>P70</th>
<th>P80</th>
<th>P90</th>
<th>P95</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3</td>
<td>3.9</td>
<td>3.9</td>
<td>5.3</td>
<td>5.8</td>
<td>6.6</td>
<td>7.3</td>
<td>7.6</td>
<td>7.9</td>
<td>8.9</td>
<td>10.9</td>
<td>12.2</td>
</tr>
</tbody>
</table>
P65 is the range for the arrived Baselines

<table>
<thead>
<tr>
<th>Delivery Rate (Person Hours/CFP) - Development Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 1D</td>
</tr>
<tr>
<td>3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 6.8 7.0 7.5 8.0 8.5 9.0 9.5 10 10.5 11 11.5</td>
</tr>
<tr>
<td>Project 2D</td>
</tr>
<tr>
<td>5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10 10.5 11 11.5</td>
</tr>
<tr>
<td>Project 3D</td>
</tr>
<tr>
<td>3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.3 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10 10.5 11 11.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P50</th>
<th>P60</th>
<th>P65</th>
<th>P70</th>
<th>P80</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD1</td>
<td>6.6</td>
<td>7.3</td>
<td>7.6</td>
<td>7.9</td>
<td>8.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delivery Rate (Person Hours/CFP) - Enhancement Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 3E</td>
</tr>
<tr>
<td>5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10 10.5 11 11.5</td>
</tr>
<tr>
<td>Project 4E</td>
</tr>
<tr>
<td>5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10 10.5 11 11.5</td>
</tr>
<tr>
<td>Project 5E</td>
</tr>
<tr>
<td>5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10 10.5 11 11.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P50</th>
<th>P60</th>
<th>P65</th>
<th>P70</th>
<th>P80</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3E</td>
<td>7.55</td>
<td>8.71</td>
<td>9.84</td>
<td>11.00</td>
<td>12.68</td>
</tr>
</tbody>
</table>

Usability
Productivity Baselines would help in project performance

Two broad project types were observed:
- **Development** – More newly created functionality with few enhancements
- **Enhancement** - More enhancements with few newly created functionalities

Planned Release level KPIs
Defect Density (Defects/CFP)
Defect Leakage [(Defects in Production)/ CFP]
CFP per FA
CFP per person month
• Development model gave better handle with less variation in terms of person hours/ CFP. Story points (SP) were comparable as well
• Enhancement Projects showed higher deviation
• Drop in productivity on a comparable team basis of Development and Enhancement projects
Standard Component Type as a common unit to map Functional Process

- Define Standard Component types as a pattern to map Functional process
- Serve as Common nomenclature for Business and Development
- During measurement, map Function Process to Standard Component type
- Measure the average CFP per standard component type
- Benchmark CFP/ Standard component type across the projects
- Testability for Measurement effectiveness
- Leveraged in Approximation model
Standard Component Type as a testability of measurement effectiveness

- Standard Component type is well understood by teams
- Comparable CFP/Standard component type signify measurement accuracy
- Statistical average serve as Wall of reference for Approximation
Approximation Model With Example usage

<table>
<thead>
<tr>
<th>Wall of Reference COSMIC FP</th>
<th>8</th>
<th>4</th>
<th>8</th>
<th>6</th>
<th>8</th>
<th>17</th>
<th>6</th>
<th>12</th>
<th>8</th>
<th>16</th>
<th>4</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Requirements/Functional Process</td>
<td></td>
</tr>
<tr>
<td>Readonly View</td>
<td></td>
</tr>
<tr>
<td>Simple Report</td>
<td></td>
</tr>
<tr>
<td>Complex Report</td>
<td></td>
</tr>
<tr>
<td>Simple Search</td>
<td></td>
</tr>
<tr>
<td>Simple Form</td>
<td></td>
</tr>
<tr>
<td>Complex Form</td>
<td></td>
</tr>
<tr>
<td>Update Simple Form</td>
<td></td>
</tr>
<tr>
<td>Update Complex Form</td>
<td></td>
</tr>
<tr>
<td>Simple Modal</td>
<td></td>
</tr>
<tr>
<td>Complex Modal</td>
<td></td>
</tr>
<tr>
<td>Simple Batch Process</td>
<td></td>
</tr>
<tr>
<td>Complex Batch Process</td>
<td></td>
</tr>
<tr>
<td>Cosmic FP Units</td>
<td></td>
</tr>
<tr>
<td>Effort to Develop</td>
<td></td>
</tr>
</tbody>
</table>

- Shows the usage of CFP/Standard component type as Wall of reference from the Measurement.
- High level requirements are mapped to discrete Standard components.
- Approximate number of Standard component types are filled by PO/ BA.
- Number of CFP for the project arrived at.
- Effort needed is derived based on P65 measurement baselines.
Plan to move up the Measurement maturity curve

<table>
<thead>
<tr>
<th>Activities (Team involvement)</th>
<th>Level 3</th>
<th>Level 2</th>
<th>Level 1</th>
<th>Maturity Level</th>
<th>Project Team (PRJ T)</th>
<th>Measurement Team (CFP T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation @ planning</td>
<td>PRJ T</td>
<td>CFP T</td>
<td>PRJ T</td>
<td>CFP T</td>
<td>PRJ T</td>
<td>CFP T</td>
</tr>
<tr>
<td>- Approximation Model (UR/ PBI Level)</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
</tr>
<tr>
<td>Measurement @ sprint planning</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
</tr>
<tr>
<td>- CFP Methodology (PBI Level)</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>C</td>
</tr>
<tr>
<td>Measurement @ Release Closure - CFP Method</td>
<td>R</td>
<td>C</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td>R</td>
</tr>
<tr>
<td>Peer Review</td>
<td>C</td>
<td>R</td>
<td>C</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Calibration of baselines(+Data collection/verification)</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Other support activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>i</td>
<td>r</td>
</tr>
<tr>
<td>Trainings</td>
<td>i</td>
<td>r</td>
<td>i</td>
<td>r</td>
<td>i</td>
<td>r</td>
</tr>
<tr>
<td>Refinement of documents, templates, checklists</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Audits</td>
<td>i</td>
<td>r</td>
<td>i</td>
<td>r</td>
<td>i</td>
<td>r</td>
</tr>
<tr>
<td>Executive Summary Meetings+Publishing</td>
<td>i</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>R</td>
</tr>
<tr>
<td>Reports</td>
<td>i</td>
<td>r</td>
<td>i</td>
<td>r</td>
<td>i</td>
<td>r</td>
</tr>
</tbody>
</table>

R:: Team completely responsible for activities
C:: Team consulted during activities
I:: Team is involved during activities

- The proposed maturity is planned to be achieved for the selected projects
- At Level 1, central measurement team with minimal project team involvement
- The involvement from project needs to gradually increase and as we move to Level 2
- BAU for project teams with measurement in SDLC
- Average effort to measure a FUR ~0.75 hr

~10 Months

~5 Months
Measurement & Governance Model

- Approximation method applied at start of release based on UR and User story availability
- CFP Method applied at FUR level at the end of a project or milestone
- Regular audits to check on compliance of model and measurement guidelines
- Management reporting on project performance
- Baseline repository for CFP Measurement
- Organization wide roll out is planned. All the projects to be measured with CFP method by 2020
- Engineering excellence through continuous process and data improvement across development continuum
- Regular process governance through audit and reporting
- Cost modeling with baselined CFP is down the path
Journey of thousand miles begins with one step.....

Thank you