

EVOLUTION OF TECHNICAL DEBT: AN EXPLORATORY STUDY

ABDULLAH MAMUN ANTONIO MARTINI MIROSLAW STARON CHRISTIAN BERGER JÖRGEN HANSSON

UNIVERSITY OF GOTHENBURG

Wilhelm Meding

Software Development Measurement Programs

Davidan mant Managana ant

VISIBLE INVISIBLE

Research goal

• To understand how the newly introduced metric *technical debt density trend* explains evolution of technical debt

Study design

- 4013 Java source files
- 11,822 Git commits
- 21 open source Java projects
- SonarQube tool with 138 code smells

Table 2: Overview of the Selected Projects				
Organization Project Name [Number of Analyzed Revisions (commits),				
	Project Duration (months), Analyzed Java Code (KLOC)]			
Microsoft	ft malmo [295, 5, 14]; oauth2-useragent [171, 12, 3]; Vso-intellij [305, 12, 64];			
	thrifty [242, 12, 44]; Git-Credential-Manager-for-Mac-and-Linux [141, 13, 5]			
Twitter	Ambrose [167, 48, 5]; cloudhopper-smpp [94, 57, 12]; elephant-bird [449, 76, 23]			
Netflix	Fenzo [98, 20, 11]; ribbon [223, 46, 22]; astyanax [549, 55, 55]			
square	Dagger [306, 46, 9]; retrofit [776, 72, 13]; picasso [518, 42, 10]			
Esri	Solutions-geoevent-java [218, 38, 35]; geometry-api-java [100, 43, 76]			
Shopify	Nokogiri [1,788, 75, 26]			
SAP	Cloud-sfsf-benefits-ext [52, 24, 3]			
Apache	Kafka [2,302, 64, 89]; zookeeper [1,474, 109, 73]; zeppelin [1,606, 39, 65]			
Total	[11,874, 907, 658]			

Metrics used in this study

Metric Name Description				
ncloc	Number of physical lines of code that are not comments (line only containing space, tab, and carriage return are ignored)			
tech_debt	Effort (time in minutes) to resolve identified code smells			
$td_density$				
$td_density_trend$	$l \text{Slope of the line of two points } (ncloc_p, td_density_p) \& (ncloc_q, td_density_q), \text{ where } p \text{ and } q \text{ are two successive commits.}$			

Technical debt density

Technical debt density trend

Data processing for two revisions of two files.

Data collection

	Table 3: Chronological steps for data processing.							
St-	Operation	Number	rNumber	Number				
		of files	of file	of data				
$^{\mathrm{ep}}$			segments	points				
1	Raw data collected from database	$11,\!358$		2,527,990				
2	Data points with NONE value removed	$11,\!358$		2,527,990				
3	Remove successive duplicated data points	$11,\!358$		24,976				
4	Files with single data points removed	4,013		18,371				
5	Split every two successive data points into pairs		$14,\!358$	14,358*2				
				= 28,716				
6	Transform every pair of data points so that we have data at		14,358	28,716				
	specific <i>ncloc</i> points, i.e., n_1 , n_2 , n_3 , etc. like in Fig. 2(b)							
7	Delete any file segment that has a single data points		3,665	17,584				
8	Create new pairs/segments by taking every two successive		13,919	13,919*2				
	data points of the existing file segments. A pair is of the form			= 27,838				
	$(n_1, d_6), (n_2, d_5)$ as shown in Fig. 2(b)							
9	Calculate slope s_1 from (n_1, d_6) , (n_2, d_5) using Equ. 1 as			13,919				
	shown in Fig. 2(b) and transform the pair into a single data							
	point with three elements (n_1, d_6, s_1) as seen in Fig. 2(c)							
10	Remove 782 data points associated to any $ncloc>\!1200$ be-			13,137				
	cause of lower number of samples for higher $ncloc$ values							
11	Remove 17 outliers related to $td_density$			13,120				

Result: Overall Accrual & Repayment of TD throughout the whole development period

Result: Be Careful of the Measurement Type

- The tech_debt metric is cumulative
- The td_density metric is normalized but still it carries effects of cumulatively measureming tech_debt
- The td_density_trend metric also carries effects of cumulatively measureming tech_debt
- The above figure/plot is not normalized even though td_density_trend comes from the normalized td_density metric
- Constructing this figure using a non-cumulative tech_debt metric will give us a normalized plot.

Result: Evolution of td_density explained with td_debt_trend

Result: Evolution of td_density explained with td_debt_trend (cont.)

Result: Componentization of tech_debt

Conclusion and future work

- Technical debt density trend metric
 - Allows explaining the evolution of technical debt in terms of accrual and repayment (componentization of technical debt) in multiple ways
- We should be careful about the basic measurement types: Cumulative vs. noncumulative
- Future Work
 - Investigate evolution of technical debt incorporating non-cumulative (organic) measurement of technical debt

