
PREDICTING TEST CASE VERDICT USING TEXTUAL
ANALYSIS OF COMMITTED CODE CHURNS

KHALED AL SABBAGH, CHALMERS | UNIVERSITY OF GOTHENBURG

REGINA HEBIG, CHALMERS | UNIVERSITY OF GOTHENBURG

MIROSLAW STARON, CHALMERS | UNIVERSITY OF GOTHENBURG

About me

• Personal profile
❑Khaled Al-Sabbagh

❑Syria

• Academic background
❑MSc degrees Management

❑MSc degree in Software Engineering

❑BSc Information Technology Engineering

• Current work
❑2nd year PhD student in Gothenburg University, Sweden

• Contact Info
❑Khaled.al-sabbagh@gu.se

❑+46729250522

mailto:Khaled.al-sabbagh@gu.se

Context: testing in continuous integration

• Continuous integration often includes (regression) testing after every build

– Frequent (every 10 minutes) integrations results in large number of test executions

– Regression suites need to be small in order to reduce the cost of testing

• Continuous testing is often organized in several suites

– Minimal suite after every build

– Larger daily suite

– Even larger weekend suite

• Developers need feedback about their code (from testing) as soon as possible

– We should strive to execute the test that have the highest probability of failure as quickly as possible after

code commit

Goals for this research

• To reduce the time for testing?

– Reduce the time for test execution to shorten the feedback loop

– Reduce the risk of re-introducing new defects when fixing the existing ones

• To increase the rate of fail/executed test cases?

– Reduce the number of test cases that are executed and do not trigger any failures

Illustration of the context

“OK”

“NOK”

“OK”

Main branch

Builds

Full
test scope (weekend)

Limited
test scope (every build)

Limited
test scope (daily)

Full
test scope (weekend)

Errors

“OK”

“OK”

“NOK”“NOK”

“OK”

“OK”

“OK”

“OK”

Full scope
executes ”OK”

Build regression
executes ”OK”

Daily scope
executes ”OK”

Full scope does not
execute ”OK” for all test
cases

The challenge: how to
ensure that these test
cases are executed in the
smallest suite directly
after the build

Problem formulation:

– How to predict which test case would fail for a given line of code?

– How can we predict whether a given test case will fail/pass for a given line of code?

– How do we optimize the “limited test scope” for each build, so that no unknown errors are found when we

run “full test scope”?

Illustration of the solution

“OK”

“NOK”

“NOK”

Main branch

Builds

Errors

“NOK”

“OK”“OK”

3. Remove the tests that
are predicted to pass

2. Expand the test suite with the
tests that are predicted to fail

1. Predict the verdict of
a test case given the
code that is checked-in

“NOK”

Code Churn
Builds

Main branch

#bb3ed #53ada…. #37baa….

//pointer declaration.
Int *p;
….
int age[100]
…..

char vowels[][5] = { {'A',
'E', 'I', 'O', 'U'}, {'a', 'e', 'i',
'o', 'u'} };

//pointer declaration.
Int *p;
….
int age[100]
…..

char vowels[][5] = { {'A',
'E', 'I', 'O', 'U'}, {'a', 'e', 'i',
'o', 'u'} };

//array declarations
int person[100]

person[0]= p
………….
…………..

The amount of changes made to software between
two points in time is referred to as code churn.

Method using Bag of Words for Test Selection (MeBoTS)

9

Step 1: (Data Extraction)

10

Code Churns
Extractor

Historical
Test Executions

Version Control
System

Code Churns

Test Executions Merge

ccv File

Baseline Test Case Name Verdict

#33bda…. ST-case 22 Failed

#bb3ed… ST-case 22 Failed

#53ada… FT-case 22 Passed

#37baa…. FT-case F2 Failed

#37baa…. FT-case F2 Failed

Main branch

Builds

#bb3ed #53ada…. #37baa….

Git diff Git diff

Step 2: (Features Extraction)

if for (; // [] * else

Line # // a * […. Class (0=Fail)

1 1 2 0 0 …. 1

2 0 1 1 0 …. 1

…. …. … … … … …

ccv File

Features
Extractor (BoW)

Bag of Words
File

//pointer declaration.
Int *p;

….
int age[100]
…..

char vowels[][5] = { {'A',
'E', 'I', 'O', 'U'}, {'a', 'e', 'i',
'o', 'u'} };

Pass
Pass
Pass
Fail
Fail
Fail
Pass
Pass
……
….. Bag of Words

csv file

csv file

Vocabulary

Tokenize &
count occurrences

Save qualified
features

Step 3: (Classification)
Bag of Words

Training Set

Validation Set

Balancing Classes

Decision TreeAdaBoostRandom Forest Aritificial NN Convolutional
NN

evaluate

30%

70%

split split

Training Classifiers

Nu of Trees: 50 Nu of Trees: 100 Nu of Layers: 3
Epochs: 100

Nu of Layers: 8
Epochs: 100

Tree-based Models Neural Network Models

Evaluation – Case and Dataset

• Company: Software Telecommunication in

Sweden

• Dataset: 12 test cases, 82 executions

• Original Dataset:

– Mix of small and large churns

– 1.4m lines of code, 500 features

• Curated Dataset:

– <120k lines of code per churn

– 290k lines of code, 500 features

Evaluation - Metrics

• Precision: how many test cases

identified as passing will pass?

• Recall: How many test cases passing,

will be identified as such?

• Goal:

• High recall to identify many test cases that need no execution

• High precision to be sure about them

• Before data curation

• After data curation

Evaluation - Results

Result:

• Medium recall: we already
identify many test cases
that need no execution

• High precision: we are
sure about them in >7 of
10 cases

Threats to validity and mitigation

• Small sample size of test executions (7 test cases).

• Test failures may be caused by an environment upgrade or defect in the test scripts.

• Non-deterministic behavior of test cases (flaky tests)

• Different architecture and configuration of the networks’ hyperparameters may result in

higher prediction performance.

Conclusion and future work

• More data to evaluate the effectiveness of MeBoTS in practice.

• The prediction performance showed a precision rate of 73% and a medium recall.

• Using the method with small code churns showed an overall improvement in precision and

recall.

• Evaluate other textual analysis techniques for better prediction.

• Evaluate the method on different software systems and contexts.

• Evaluate the trained model on code changes from outside the extracted sample.

• Measure the required time to retrain the model for better accuracy.

