PREDICTING TEST CASE VERDICT USING TEXTUAL
ANALYSIS OF COMMITTED CODE CHURNS

KHALED AL SABBAGH, CHALMERS | UNIVERSITY OF GOTHENBURG
REGINA HEBIG, CHALMERS | UNIVERSITY OF GOTHENBURG

MIROSLAW STARON, CHALMERS | UNIVERSITY OF GOTHENBURG

I Automotive

Software
Architectures
o]

GOTEBORGS
UNIVERSITET

Dspengs 1

About me

* Personal profile
U Khaled Al-Sabbagh

U Syria
« Academic background

UMSc degrees Management
MSc degree in Software Engineering
BSc Information Technology Engineering

e Current work
U 2nd year PhD student in Gothenburg University, Sweden

 Contact Info

OdKhaled.al-sabbagh@qu.se
1+46729250522

mailto:Khaled.al-sabbagh@gu.se

I Automotive | Software
Software Development
Architectures Measurement
Anmotucen Programs

GOTEBORGS
UNIVERSITET

Context: testing In continuous integration

« Continuous integration often includes (regression) testing after every build
— Frequent (every 10 minutes) integrations results in large number of test executions
— Regression suites need to be small in order to reduce the cost of testing

« Continuous testing is often organized in several suites
— Minimal suite after every build
— Larger daily suite
— Even larger weekend suite

* Developers need feedback about their code (from testing) as soon as possible

— We should strive to execute the test that have the highest probability of failure as quickly as possible after
code commit

; [éufttomotive i I
i ortware Development
5 S0 Architectures Measur%ment
GOTEBORGS Anvmotucn Programs
UNIVERSITET

Goals for this research

 To reduce the time for testing?
— Reduce the time for test execution to shorten the feedback loop
— Reduce the risk of re-introducing new defects when fixing the existing ones

* To increase the rate of fail/executed test cases?
— Reduce the number of test cases that are executed and do not trigger any failures

S, Mrdaw Surn | - = =
;“ﬁ) [éufttomotive Software

L ortware Development

= Architectures Measur%ment
GOTEBORGS ogsetoe Programs

UNIVERSITET

lllustration of the context

-

O O—OO— OO CF—O——O Main branch

HOKII ”OK” : IIO KH
IIOK" ”OK" : HOK"
o ow The challenge: how to
L /—; ”NOK”
tmited & ensure that these test
L test scope (every build) Errors ==2i___ .
ok” Y R e “NOK” cases are executed in the
Limited

smallest suite directly
after the build

test scope (daily)

Full Full
test scope (weekend) test scope (weekend)

Full : . . Full scope does not

ull scope Build regression _ Daily scope o~
LS . > o~ » execute "OK” for all test

executes "OK executes "OK executes "OK cases

; [éufttomotive i I
i oftware Development
5 S0 Architectures Measur%ment
GOTEBORGS Anvmotucn Programs
UNIVERSITET

Problem formulation:

— How to predict which test case would fail for a given line of code?
— How can we predict whether a given test case will fail/pass for a given line of code?

— How do we optimize the “limited test scope” for each build, so that no unknown errors are found when we
run “full test scope”?

R Iéufttomotive [Softiare Nl

s oftware Development

5 T Architectures Measur%ment
GOTEBORGS

A moction

Programs
UNIVERSITET

lllustration of the solution

Builds
IIOKH
. . lINOK" : HNOK"
1. Predict the verdict of
a test case given the > oK N, —> “OK”
code that is checked-in ‘ —————————
WV Errors <<l.___
oo T
f - “NOK”
1
;

2. Expand the test suite with the
3. Remove the tests that tests that are predicted to fail
are predicted to pass

Main branch

GOTEBORGS
UNIVERSITET

lAutomotlve [Sofivacl

Software Development

Archlte(tures Measurement
Programs

Code Churn

Builds

—
-
——

Main branch

..
~
~
~
~
~
~
~
~
~,
~

The amount of changes made to software between
two points in time is referred to as code churn.

#37baa....

#bb3ed #53ada....
l)
//pointer declaration. //pointer declaration.
Int *p; Int *p;
int age[100] int age[100]

char vowels[][5] = { {'A,

IEI III IOI IUI}, {lal' Iel' Iil,

0, U

char vowels[][5] = {{'A,
IEI III IOI IU } {l 1 l 1 l 1
] l lul}}

//array declarations
int person[100]

person[0]=p

I Automotive | Software
Software Development
Architectures Measurement
Anmotucen Programs

GOTEBORGS
UNIVERSITET

Method using Bag of Words for Test Selection (MeBoTS)

Lines of Eaq ol
Test Case
Words.csv
Executions EtEP s e EtEP *
Code Churns Features Extractor |——M
Extractor
csy G5V

Step 3

b

[Classification]

Version Control
System

E | Automotlve Softwarcll
Software Development
. Archltectures Measurement
GOTEBORGS Programs
UNIVERSITET

i Merge
Test Executions (Code Churns] g

L Extractor J g
Historical ccv File
Test Executions Code Churns
Baseline Test Case Name Verdict
~)
#33bda... ST-case 22 Failed Ny Version Control
-l | System
#bb3ed... ST-case 22 Failed | =
......................... Builds
#53ada... FT-case 22 Passed N
#37baa.... FT-case F2 Failed ______________________________ Main branch
#37baa.... FT-case F2 Failed . . } . . ‘ . . 1
#bb3ed #53ada.... #37baa....
| J\ J
Git diff Git diff

;; | Altomote Seffarcl
Software Development
. Archltectures Measurement
GOTEBORGS Programs
UNIVERSITET o L

Step 2: (Features Extraction)

Tokenize & Save qualified A
A count occurrences (Features 1 features
L Extractor (BoW) J .
ccv File Bag of-Words
File
Vocabulary
if for (; // [] * else
//pointer declaration. Pass
Int *p; Pass
Pass Line # // a * [Class (0=Fail)
Fail
Fail
int age[100] Fail ! ! 2 0 0 !
Pass 2 0 1 1 0 1
char vowels[][5] = { {'A", Pass
1E| ||v |O| 'U'}, {lal' lel’ Iil,
uh Bag of Words
csv file

csv file

;; l Automotlve y
Software Development
. Archltectures Measurement
GOTEBORGS Programs
UNIVERSITET :

Step 3: (CIaSS|f|cat|on)

Bag of Words
split é split
70%
s ¥ ")
Training Set 30%
L) L 4
g v N [Validation Set
Balancing Classes 4
o l J
) evaluate
Training Classifiers J
Tree-based Models Neural Network Models
l l ¥ 1
Y Y Y A 4 . 4
[Random Forest J [AdaBoost } [Decision Tree } [Aritificial NN } [Convolutional }
NN
Nu of Trees: 50 Nu of Trees: 100 Nu of Layers: 3 Nu of Layers: 8

Epochs: 100 Epochs: 100

; l éufttomotive K
o i oftware Development
5 S0 Architectures Measureement
GOTEBORGS Anvmotucn Programs
UNIVERSITET

Evaluation — Case and Dataset

« Company: Software Telecommunication in
Sweden

e Dataset: 12 test cases, 82 executions

* Original Dataset:
— Mix of small and large churns
— 1.4m lines of code, 500 features

e Curated Dataset:
— <120k lines of code per churn
— 290k lines of code, 500 features

Number of Test Executions

17.5 1

15.0 1

125

10.0 A

7.5 1

5.0 1

25 4

9 o» @ £

0 50000

100000

150000
Line of Code

200000

250000

300000

“ lAutomotlve [Sofiware

i Software Development

) Ar(hlte(tures Measurement
GOTEBORGS Programs
UNIVERSITET Sl

Evaluation - Metrics

* Precision: how many test cases

. T'ruePositive|
identified as passing will pass? precision =

T'ruePositive| + |FalsePositive|

* Recall: How many test cases passing, o
will be identified as such? T'ruePositive]

recall =
TruePositive| + |FalseN egative|

e Goal:

« High recall to identify many test cases that need no execution
« High precision to be sure about them

mmmmmmmm

l Automotive
Software

Software
Development
Measurement
Programs

, ol Architectures
GOTEBORGS Y BE ° B ¢
UNIVERSITET
B0
N Precision
: N Rzcal
70

Evaluation - Results * . 5 ,

» Before data curation

Medels s (ﬁ:“
» After data curation & 7

7l s Precision
N Recall

Result:

« Medium recall: we already
identify many test cases
that need no execution

» High precision: we are
sure about them in >7 of
10 cases

Dt Tiew Aasdsm Faaris Maleam Mg Corwalotiond

FesT oD Metwork
Models

l Automotive
Software
Architectures

GOTEBORGS
UNIVERSITET

Threats to validity and mitigation

« Small sample size of test executions (7 test cases).

* Test failures may be caused by an environment upgrade or defect in the test scripts.

* Non-deterministic behavior of test cases (flaky tests)

« Different architecture and configuration of the networks’ hyperparameters may result in
higher prediction performance.

l Automotive
Software
Architectures

GOTEBORGS
UNIVERSITET

Conclusion and future work

* More data to evaluate the effectiveness of MeBoTS in practice.
» The prediction performance showed a precision rate of 73% and a medium recall.

 Using the method with small code churns showed an overall improvement in precision and
recall.

« Evaluate other textual analysis techniques for better prediction.
« Evaluate the method on different software systems and contexts.
« Evaluate the trained model on code changes from outside the extracted sample.

« Measure the required time to retrain the model for better accuracy.

