
© 2019 CGI Inc.

The Cost and Benefit of

Technical Debt Reduction

IWSM Mensura 2019

Eltjo Poort

Architecture Practice Lead

October 9, 2019

Footer appears here, if required 1

© 2019 CGI Inc.

Move fast and break things

“As developers, moving quickly was so important, we would even tolerate a

few bugs to do it” – Mark Zuckerberg

“Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.” – Agile Manifesto

• Functionality represents direct business value

• “Break things”  lower priority to work with indirect business value

2Footer appears here, if required

© 2019 CGI Inc.

We moved fast, now things are broken…

3

79% of CIOs interviewed worldwide by CGI indicate that their ability to change is slowed

significantly by technology and agility constraints*. Technical debt is causing real economic,

societal and ethical problems.

Possible causes:

• KPIs (Key Performance Indicators) prioritizing short-term success over long-term investments

• Overinflated stakeholder expectations (created by short-term velocity that cannot be kept up)

• Cargo cult: mimicking Internet giants’ methods without considering specific context

• Misapplication of agile practices, e.g.:

• WSJF (Weighted Shorted Job First) prioritization mistakenly applied to enablers

• MVP (Minimum Viable Product) used as architectural basis (edge cases will get you!)

*CGI’s Global Insights, interviews with more than 1,400 executives

across CGI’s major regions and the 10 industries we serve

© 2019 CGI Inc.

Cargo cult

Mimicking practices that led to desirable

results for others, without fully understanding

the underlying mechanisms or realizing the

difference in context with your own situation.

In attempts to get cargo to fall by parachute or

land in planes or ships again, islanders

imitated the same practices they had seen

the soldiers, sailors, and airmen use... In a

form of sympathetic magic, many built life-size

replicas of airplanes out of straw and cut new

military-style landing strips out of the jungle,

hoping to attract more airplanes.

(Wikipedia)

4Footer appears here, if required

© 2019 CGI Inc.

Architecture responsibilities

5Risk and Cost Driven Architecture

Understanding
Context

Making
Decisions

Modeling

Validating Delivery

Architecture as a set

of design decisions
Tyree, Bosch, Kruchten, Woods

Architecture as an

abstraction
Shaw, Garlan

Architecture is

context

Architecture as a risk and cost

management discipline
Fairbanks, Poort

Architecture as a set of

structures
SEI, Kruchten, Rozanski & Woods

© 2019 CGI Inc.

Architecture responsibilities

6Risk and Cost Driven Architecture

Understanding
Context

Making
Decisions

Modeling

Validating Delivery

Means

Primary deliverable

Prerequisite

Purpose

© 2019 CGI Inc.

Architecture maturity

An organization’s architecture function is

mature if:

• It pays balanced attention to all five

responsibilities

• Activities in the five responsibility areas are

coherent and related to each other

7Risk and Cost Driven Architecture

Understanding
Context

Making
Decisions

Modeling

Validating Delivery

Excessive technical debt is usually a sign of

an imbalanced architecture function, leading

to an unsustainable pace of development.

© 2019 CGI Inc.

Combining Architecture with Agile working

Conflicting paradigms?

Too much architecture leads to…

• Late business value delivery?

• Trouble responding to change?

• Slow learning from experience?

• Wasted design effort?

Too much agile practice leads to…

• Ill-considered, inconsistent choices?

• Re-inventing the wheel?

• Technical debt accumulation?

• Short-lived solutions?

Risk and Cost Driven Architecture 8

© 2019 CGI Inc.

The Waterfall Wasteland

9Risk and Cost Driven Architecture

Understanding
Context

Modeling

Validating

“We don’t take

decisions, we only

advise management”

“Our design was

perfect, but the

builders were

incompetent”

Making
Decisions

Delivery

© 2019 CGI Inc.

The Agile Outback

10Risk and Cost Driven Architecture

Understanding
Context

Making
Decisions

Delivery

“The best

architectures

emerge”

“Fail early and

fail often”

Modeling

Validating

© 2019 CGI Inc.

Benefits of combining Agile and Architecture

Risk and Cost Driven Architecture

Architecture

• Up-front design

• Structural stability

• Standardization

• Stability

• Risk and cost control

Balance

• Shortening the learning cycle

• Just enough anticipation

• Decentral if possible, standards if necessary

• Architectural design with a short feedback loop

• Based on business rationale and not on dogma

Agile

• Experimentation

• Business features

• Local optimization

• Flexibility

• Quick business value

11

© 2019 CGI Inc.

Technical Debt

Key Architectural Concern based on financial metaphor

Cost

• Interest: increased
cost of maintenance
due to debt

• Principal: cost of
future work to
eliminate debt

Risk
• Technical Debt

accumulates until
Solution breaks
down

12

© 2019 CGI Inc.

Technical Debt

Types
Test debt

Architectural
debt

• structural debt

• introduced by choices of architect

• technology gaps

• known up front or emerging

Implementation
debt

• low internal quality

• code complexity

• code smells

• coding style violations

Documentation
debt Code analysis tools (e.g.. SONARQube) only

find this type of technical debt!

13

© 2019 CGI Inc.

Technical Debt

Examples

Business critical solution runs on AS400 platform no longer supported (technology gap)

• principal: cost of migration

• interest: expensive maintenance, additional cost of changes

• risk exposure: increased probability + impact of failure

Developer duplicates code to make release deadline (low internal quality)

• principal: cost of refactoring

• interest: double maintenance

• Risk exposure: duplicate bugs remain

Bypass ESB to obtain data directly from other system (architectural debt)

• no time to expose data through ESB

• miss delivery deadline  violate enterprise architecture

• principal? interest?

14

© 2019 CGI Inc.

Structural Technical Debt example

ESB

App A

App B

App…

ESB

App A

App B

App…

ESB

App A

App B

App…

Architectural decision:

Apps communicate over ESB

Take on technical debt:

A contacts B directly

Repay technical debt:

refactor A & B

D
e
a
d
lin

e

P
ri

n
c
ip

a
lInterest

15

© 2019 CGI Inc.

Technical Debt

What’s in your backlog?

Debt remediation in product backlog:

• “Under the hood” improvement

• Not directly visible to end-users (but to

architects, delivery, operations team)

• As long as the remediation is not done,

stakeholders pay some kind of interest

(lower velocity, higher risk,…)

16

New features

Added

functionality

Architecture

Runway

Defects Technical

Debt

Visible Invisible

Positive

Value

Negative

Value

Direct business value
Indirect business value

“Enablers”

© 2019 CGI Inc.

Balancing your backlog in Scrum

Risk and Cost Driven Architecture

Stakeholders

17

© 2019 CGI Inc.

Technical Debt Control

Step 1: Identify Technical Debt

Schedule
pressure

Carelessness,
ignorance

Source: Martin Fowler

• Minimize interest

• Execute as if 1st

class choice

• May be permanent

• Minimize interest

• Refactor if

economic sense

18

© 2019 CGI Inc.

Technical Debt Control

Step 2: Quantify in Business Terms

Determine cost

• Principal: one-time cost of removing debt

• migration, refactoring,…

• Interest: increased recurring cost

• less efficient modifications, more testing, more

expensive h/w,…

• interest stops when principal repaid

Determine risk

• higher probability of failure (not fulfilling

requirements, esp. NFRs)

• higher impact of failure (more expensive to

fix)

19

© 2019 CGI Inc.

Why Technical Debt Ambushes Us

Over time, technical debt risk tends to grow:

• Probability of failure increases due to e.g. overlooking old shortcuts, aging technology

• Impact of failure increases due to growing system size & complexity

If probability and impact grow linearly, risk exposure grows parabolically

P

I

P*I

Oops…

20

© 2019 CGI Inc.

Technical Debt Control

Step 3: Manage Technical Debt Explicitly

Use Architectural Concern & Decision Register

• all technical debt  Architectural Concern Register

• deliberate technical debt  Architectural Decision Register

Make Technical Debt visible as business risk

• Put on risk register

• Find business owner(s) who feel the pain of the risk (and can do something about it)

Consider putting Technical Debt on balance sheet

• deduct remaining technical debt from project result/product value

• take away incentive for project managers to incur debt

• fairer starting position for maintenance team

21

© 2019 CGI Inc.

Technical Debt Control

Balance your backlog – reserve capacity for enablers

Reserve 20% of each

sprint for enablers?

• …but when do the

bigger enablers get

done?

Reserve 1 in 4 sprints for

enablers!

• Great for expectation

management

• Tip: rotate enabler

sprint duty among

teams (great for

collaboration)

22

© 2019 CGI Inc.

A Simple Business Case for Debt Reduction

Item Total

Benefits

Reduced recurrent maintenance cost M/yr

Reduced risk exposure R/yr

Total benefits per year M+R M+R

Cost

Principal: effort of migration/refactoring/… P

Opportunity cost (delayed features) F

Total cost P+F P+F

TOTAL RETURN ON INVESTMENT (1 YEAR) (M+R) – (P+F)

23

© 2019 CGI Inc.

Opportunity Cost of Technical Debt Reduction

Cost of delayed value delivery

Rel 1.1 Rel 1.2

Not repaying debt

Repaying debt

Opportunity cost

24

© 2019 CGI Inc.

A Simple Business Case for Debt Reduction

Benefits Cost

Reduced recurrent

maintenance cost

Reduced risk

exposure

Cost of delayed

features

Principal

(refactoring)

Over time, risk exposure typically dominates

25

Opportunity cost is usually very time sensitive

© 2019 CGI Inc.

Technical Debt Control

Example business case

Your travel booking system’s front-end uses an old web-app platform called Comanche 2.0 that

does not support encrypted communication (SSL / https protocol). This violates European privacy

law.

• Upgrading to Comanche 3.0 is estimated to cost 2 sprints (1 month), €32K labor and €10K

hardware upgrades [principal]

• Comanche 3.0 has some functionality that will make your team of 4 DEVs 10% more

productive [interest – maintenance cost]

• Not supporting SSL runs the risk of a substantial fine, estimated at €500K with a 10% annual

probability [interest – risk exposure]

• Product management estimates that delaying their must-have feature delivery by 1 month will

cost 2% market share, which translates to €20K [opportunity cost]

26

© 2019 CGI Inc.

Technical Debt Control

Example business case

Maintenance cost reductions

1 10% productivity 40K/yr

2

Total 40K/yr

Risk scenarios p (%) Impact Exposure

1 Privacy regulation violation fine 10/yr 500K 50K/yr

2

3

Total 50K/yr

Opportunity cost

1 Must-have feature 20K

2

Total 20K

Principal

1 Upgrade (2 sprints) 32K

2 Extra Hardware 10K

3

Total 42K

27

© 2019 CGI Inc.

Technical Debt Control

Example business case

Item Total

Benefits

Reduced recurrent maintenance cost M 40K/yr

Reduced risk exposure R 50K/yr

Total benefits per year M+R 90K/yr

Cost

Principal: effort of migration/refactoring/… P 42K

Opportunity cost (delayed features) F 20K

Total cost P+F 62K

TOTAL RETURN ON INVESTMENT (1 YEAR) 28K

TOTAL RETURN ON INVESTMENT (2 YEARS) 118K

28

© 2019 CGI Inc.

Architecture Roadmapping

Just Enough Anticipation

29

© 2019 CGI Inc.

Architecture Roadmapping

Economic impact: real options & NPV

P1: S0

Market loves it

+ $4M

Market hates it

+ $1M

S1

NPV (P1) = -2M + 0.5x4M + 0.5x1M = 0.5M

-2M

30

Source: Kevin Sullivan

Net present value (NPV) is

the difference between

the present value of cash

inflows and the present

value of cash outflows over a

period of time.

NPV is used in capital

budgeting and investment

planning to analyze the

profitability of a projected

investment or project

© 2019 CGI Inc.

Architecture Roadmapping

Economic impact: real options & NPV (2)

P2: S0

Market loves it

Market hates it

+ $1M

Sd

NPV (P2) = -1M + 0.5x3M + 0.5x1M = 1M

-1M

Source: Kevin Sullivan

-1M
S1 +4M

Taking Technical Debt has increased system value.

Take Debt

Repay debt

31

© 2019 CGI Inc.

Architecture Roadmapping

Economic impact: real options & NPV (3)

P2: S0

Market loves it

Market hates it

+ $1M

Sd

NPV (P3) = -1M + 0.67 x 2.5M + 0.33 x 1M = 1M

-1M

-1.5M
S1 +4M

More realistically:

Debt + interest

High chances of success: beat competition, early user feedback

Repay debt +

interest

Higher chance

of success

Source: Kevin Sullivan

© 2019 CGI Inc.

Architecture Roadmapping

Identify external architectural events

Events that influence risk, cost and value of improvement items, e.g.:

• competitor’s release plans

• legislation into effect

• expiration of licences, warranty, support

• new release of COTS component

• change in vendor pricing strategy

• quality threshold exceeded due to technical debt

Q3 ‘15 Q4 ‘15 2016 Q2 ‘16 Q3 ‘16
WebLogic

License

Expires

New Reporting

Regulations

Competitor

Releases NextGen

33

© 2019 CGI Inc.

Architecture Roadmapping

Create and compare release paths

Assign solution improvement items to releases based on

• Dependency analysis

• Real option value

• Technical debt control

Rel 1.3 Rel 2.0 Rel 2.1 Rel 2.2 Rel 2.3
WebLogic

License

Expires

New Reporting

Regulations

Competitor

Releases NextGen

Reserve capacity for agility

34

© 2019 CGI Inc.

Architecture Roadmapping

Release strategy 1: value-first

• In line with Agile philosophy

• May increase TCO (more refactoring)

• Too “greedy” algorithm may run project into wall (complete rebuild)

• Good in volatile environments

Start Rel 1.0 Rel 1.1 Rel 1.2 Rel 2.0

Manage stakeholder

expectations about the

evolution of this slope!

35

© 2019 CGI Inc.

Architecture Roadmapping

Release strategy 2: architecture-first

• In line with plan-driven philosophy

• Late delivery of value  risk of cancellation

• Risk of building wrong architecture (if context changes)

• Good for complex solutions

Start Rel 0.1 Rel 0.2 Rel 1.0 Rel 2.0

36

© 2019 CGI Inc.

Architecture Roadmapping

Real-life experiences

Significant benefits observed

• Improved (more realistic) stakeholder

expectations

• Better prioritization of required architectural

improvements

• Helps architects articulate business impact

of roadmapping scenarios

• Helps architects discuss timing of

architectural improvements

• based on business impact rather than generic

(dogmatic) “rules” like YAGNI

37

Image: Transavia, Rik Farenhorst

© 2019 CGI Inc.

Summary

• Excessive technical debt is often a sign of

an imbalanced architecture function, leading

to an unsustainable pace of development.

• Risk and opportunity cost usually dominate

the business case for technical debt

reduction.

• The key to long-term technical debt control

is timely involvement of business

stakeholders in achieving just enough

anticipation.

38Footer appears here, if required

The term technical debt is misleading: this is

a serious business concern that requires

continuous leadership attention.

© 2019 CGI Inc.

Section slide

Subtitle, if required

Footer appears here, if required 39

