

COSMIC AND QUALITY OF REQUIREMENTS

Sylvie Trudel, PhD, professor, UQAM 软件的老市,蒙特利尔魁北克大学

IWSM-Mensura 2018, Beijing, China, September 18-20

© Sylvie Trudel, 2018

- Quality of requirements
- The COSMIC method overview
- Defect detection experiments
- Requirement defects vs. Functional size
- Discussion

³ QUALITY OF REQUIREMENTS

Why and how it influences software project performance indicators

Frequent project performance indicators

COSMIC Typical requirements defects

Incomplete

- Ambiguous
- Inconsistent
- Inadequate
- Wrong
- Irrelevant
- Misplaced
- Etc.

- Requirements usage:
 - Estimating \rightarrow underestimation
 - Scoping → partial or wrong software product
 - Reporting → wrong accomplishment data
 - Agreement with the client → dissatisfaction

. Identifying requirements defects

- Peer reviews, including inspections
- Formal requirements reviews
- Simulations
- Proof of concept
- Modelling
- Etc.

Example of an inspection method

 Adapted by CRIM from Gilb & Graham (1993)

8

[Defects corrected and inspection data collected]

⁹ The COSMIC Method Overview

Why and how it measures the software functional size

Why do we measure the software size of projects?

10

Four typical needs:

- 1. Process productivity
- 2. Estimation
- 3. Benchmarking
- 4. Governance
- Need for objectivity, repeatability, and reproducibility
- How to measure software size independently from technology?
 Solution:

Measure functional size with the ISO 19761 standard

Productivity of software projects

Strong correlation between:

11

- Unit cost = Effort / Size → hours/size-unit
- Productivity = Size / Effort \rightarrow size-unit/person-month
- Delivery rate = Size / Time \rightarrow size-unit/month

ISO/IEC standards related to functional

2nd generation

IWSM-Mensura 2018, Beijing, China

COSMIC Overview

14 Defect Detection Experiments

Comparative study to assess the efficiency and effectiveness of peer reviews and COSMIC as a means to identify defects in software requiments

 Contribute to improve the quality of functional software requirements by assessing efficiency and effectiveness of the COSMIC method as a means to identify defects and then compare the results with a peer review approach

Peer reviews derived measures

 Effectiveness (unit cost) = (minutes/defect)

- Efficiency (%) = # defects found Total # of defects
- Only consider Critical, Major and Minor defects
 - Drop spelling & syntax errors and other issues (improvement suggestions & questions)

Experiment protocol overview

Prepare experiments:

18

IVVSIMI-MENSURU ZOIS, DEIJING, CNINU (C) SYIVIE IRUUEI ZOIS

Data Storage

W

The uObserve SRS

19

Peer reviewed Defects fixed 2. uObserve uObserve 3. Software developed SRS SRS successfully> v1.0 v0.1 4. SRS reviewed by industry expert 5. Defects fixed **Event-based** system Compliant 2200 w/ UML[₩]2.0 2 software words 10 use Compliant boundaries cases w/IEEE Std IWSM-Mensura 2018, Beijing, China (c) Sylvie Trudel 2308

1st phase of experiments CÓSMIC

Defects & other issues: Raw Data

Defect analysis

- Inspectors and measurers find defects of different nature
- Measurers find more defects of a higher severity than inspectors
- Defects affecting functional size:
 - Ambiguous functional descriptions
 - Missing functional processes
 - Missing error handling
 - Ambiguous data groups
 - Ambiguities due to multiple occurences

What if ...

cosmic a measurer replaces an inspector

Efficiency

- Average efficiency with 2 to 4 inspectors = 19.2%
- Adding an inspector = 23.6%
- Adding a measurer = 22.4% (♥1.2%)
- \rightarrow But: measurers find higher severity defects!

Effectiveness

- Average effectiveness with 2 to 4 inspectors = 49.6 min/defect
- Adding an inspective
 32.4 min/defect
- Adding a measurer
 = 28.0 min/defect

 \rightarrow Plus: you get the size measured!

(c) Sylvie Trudel 2018

Requirement defects vs. Functional size

Exploring the consequences experimentally

2nd phase of experiments

IWSM-Mensura 2018, Beijing, China

(c) Sylvie Trudel 2018

(c) Sylvie Trudel 2018

Data analysis summary

27

Objective: Determine the <u>influence</u> of defects on functional size

- Defects in requirements influence the functional size: Up to 39%
- Important decrease of new defects identified: -86%
 - However, some measurers said they would have found more defects if they had more time
- All differences among individual results were explained through 20 written measurement:
 - Level of decomposition
 - Identified boundaries
 - Identified functional users
 - Identified functional processes
 - Absence of a data model

28 Discussion

And future work

IWSM-Mensura 2018, Beijing, China

(c) Sylvie Trudel 2018

- Exploration of the value-added of having a measurer as part of an inspection team
- Relation between requirements defects and functional size
- Practical new usage of the COSMIC method
- Shifting of the measurement cost from management cost (indirect) to software engineering cost (direct)

- Process residual defects into uObserve SRS v3.0
 - Include a verified measurement case study

SMIC (

www.cosmic-sizing.org