
A ‘SCATTER-GUN’ OR ‘RIFLE-SHOT’
APPROACH TO MANAGING AND ESTIMATING
SOFTWARE PROCESSES?

IWSM-Mensura Conference
Beijing, September 2018

Charles Symons

© Charles Symons 2018

Agenda

§ Goals and terminology
§ The challenges of estimating, measuring and

controlling the performance of software
processes

§ The ‘Scatter-gun’ approach
§ The ‘Rifle-shot’ approach
§ Conclusions

2

© Charles Symons 2018

Let us explore ….

…… how to measure and control the performance of software
processes, and to estimate future processes:

using
external data

using internal
data

(and/or)

3

© Charles Symons 2018

the ‘Scatter-gun’
approach

the ‘Rifle-shot’
approach

The analogy

The ‘Scatter-gun’

The ‘Rifle-shot’

4

© Charles Symons 2018

Our goal: master the whole cycle of managing
software processes with the aid of measurements

Measure actual
performance and

‘cost-drivers’

Analyse and learn
Establish ‘benchmarks’

Control performance
against targets

Estimate future
processes

Data repository

5

© Charles Symons 2018

Example: using past productivity
measurements to estimate effort for a new
project

‘Best’ estimated effort =
Adjustments for

project-specific ‘cost-
drivers’

 Estimated software size
Benchmark project productivity

x

Measure productivity =
Software size
 Project effort

Completed projects:

‘Typical’ estimated effort =
 Estimated software size
Benchmark project productivity

New project:

6

© Charles Symons 2018

Establish benchmark productivity values
for each type of project

By ‘cost-drivers’ we really mean ‘performance-
drivers’, excluding financial factors

7

‘Cost’ = (Performance-drivers) x (Financial
factors)
Excluding financial factors:
• People costs (salary, social costs, overheads, etc.)
• Technology costs (capital, maintenance, etc.)
• Exchange rates, accounting practices, etc.
• Benefits realization

© Charles Symons 2018

Agenda

§ Goals and terminology
§ The challenges of estimating, measuring and

controlling the performance of software
processes

§ The ‘Scatter-gun’ approach
§ The ‘Rifle-shot’ approach
§ Conclusions

8

© Charles Symons 2018

1. Few organizations really master the control
cycle for managing and estimating software
processes

9

§ High proportions of software project failures and
cost over-runs

§ Who does best?
§ Commercial software suppliers – a matter of

survival
§ Agile teams may benefit from the rapid

feedback cycle, but estimating is still poor

Why the problems? Developing and maintaining software is a partly
unpredictable process

© Charles Symons 2018

2. The performance of software processes can
be measured in various ways, that are tradeable

Project achievement vs plan
• Actual vs. estimated:
 Effort, Duration, Size

Project productivity
• Size / Effort

Project speed
• Size / Duration

Product quality
• Defect density (# Defects/Size)
• Functional (e.g. business needs)
• Technical (e.g. maintainability,

response time, etc.)

… and the performance of on-going maintenance and enhancement processes

10

© Charles Symons 2018

3. Mastering the control cycle requires a
good method for measuring software size

Only ‘Functional Size Measurement’ methods can be used for the whole control
cycle

ü Technology-independent
ü International standard methods
• ‘First Generation’ methods have limitations
• Manual measurement requires experience

Size:
• Is a key component of performance measures,
• … and the biggest driver of effort and time,
• … and risk increases with size

11

© Charles Symons 2018

4. There are very many
possible cost-drivers ….

Hardware

platform(s)
Programming language(s)

Software

re-use

Staff
problem-area

experience
Requirements

uncertainty

SIZE
Development methods

Project-management

method
New, maintenance, re-development

Risk Budget, tim
e

constra
ints

Domain (business
vs safety-critical)Industry

Staff technology experience

Staff turnover

Interfaces, dependencies

Number of implementations Security

12

© Charles Symons 2018
Cha
nges

Non-functional
requirements

4. … and there are many different views
on what are the most important cost-
drivers
§ The ISBSG collects data for a new development project via 33 questions on

size and ~70 questions on other cost-drivers 1)

§ Commercial estimating tools take account of very large numbers of
cost-drivers 4)

§ A COSMIC/ISBSG study lists 42 Non-Functional requirements and
19 Project Requirements & Constraints 3)

§ The ‘open’ COCOMO estimating model requires data on size and
22 cost-drivers 2)

13

© Charles Symons 2018

Summary: implementing the software
control cycle faces many inherent
challenges

§ Software processes are part-routine, part-unpredictable

§ The performance of software processes has multiple, tradeable
aspects

§ There are so many variables, it is impossible to build general
statistically-valid estimation models for more than a few
variables
(Existing estimation models are mainly based on expert
judgement)

14

© Charles Symons 2018

Agenda

§ Goals and terminology
§ The challenges of measuring and controlling the

performance of software processes
§ The ‘Scatter-gun’ approach
§ The ‘Rifle-shot’ approach
§ Conclusions

15

© Charles Symons 2018

Suppose you want to use external benchmark
data and estimating tools for the control cycle

Measure sizes, actual
performance and cost-drivers

for sample projects

Report on your
performance vs

benchmark

External
benchmark
database

The processes are simple in principle:

BENCHMARKING

Estimated effort
+ range of
uncertainty

External
benchmark
databaseEstimate size, cost-

drivers,
for new project Commercial

estimating tool

(and/or)

EFFORT ESTIMATION

16

© Charles Symons 2018

External benchmarking databases typically show
large variations in performance across projects

Actually, a typical ‘fan-shaped’
size/effort distribution 5)

A size/effort relationship?
(Note the log-log scales!)

SAME DATA!

17

© Charles Symons 2018

Why? Organizations differ in their real
performance, and report data inconsistently

A project reports its total effort as ‘1550 work-hours’

§ What activities were included in the effort figure?
§ All of feasibility study …… to implementation, or?
§ ‘Overheads’, specialists, customers?

§ Standard hours or including overtime?

Example

18

© Charles Symons 2018

Benchmarking services, e.g. ISBSG, do their best to normalise
reported effort data, and to check data quality.

Using e.g. ISBSG data for benchmarking
or estimating is simple, but not very
accurate

Search criteria:
Industry = Insurance
New development
Size measurement = IFPUG/Nesma
Programming language: Java

Benchmarking: your average = 10 WH/FP You are ‘slightly better than average’

Work-hours/FP 6)

Min 3.1
10% 5.3
25% 8.2
Median 11.5
75% 15.2
90% 19.7
Max 24.8

(174
projects)

Estimating: new project software size = 200 FP Estimated effort = 2300 WH
 (50% probability in range

1640 – 3040 WH)

19

© Charles Symons 2018

Agenda

§ Goals and terminology
§ The challenges of measuring and controlling the

performance of software processes
§ The ‘Scatter-gun’ approach
§ The ‘Rifle-shot’ approach
§ Conclusions

20

© Charles Symons 2018

Goal: master the cycle of managing software
processes using COSMIC function point (CFP) sizes
and internal data

Measure actual
performance and

cost-drivers

Analyse and learn.
Establish own CFP

size/effort relations

Repository of
internal data

Control performance
against targets

Estimate and
budget future

processes

21

© Charles Symons 2018

Using the COSMIC method of measuring
functional size has many advantages

§ Based on fundamental software engineering principles, hence:
§ applicable to business, real-time and infrastructure software
§ at any level of decomposition
§ ‘future-proof’
§ relatively easy to automate

§ Variants exist for approximate size measurement, early
in the life of a project

§ ‘Open’, free, comprehensive documentation 7)

§ ISO/IEC standard; endorsed by US GAO, NIST, etc.

22

© Charles Symons 2018

COSMIC-measured sizes correlate very
well with effort. Case 1: Renault
Automotive

Renault 8) uses CFP sizing to control the development and enhancement of
Electronic Control Units (ECU’s)

• tracks progress of ECU specification teams…

• who create designs in Matlab Simulink…

• which are automatically measured in CFP

Motivation for automation: speed, accuracy of measurement

23

© Charles Symons 2018

Renault achieves remarkable cost
estimation accuracy from its ECU designs

Cost vs size (CFP)

Memory size vs
software size (CFP)

24

© Charles Symons 2018

Case 2: Web effort estimation is more
accurate with COSMIC than using classic
FPA

1000

500

0

-500

-1000

Work-hour
Residuals

CFP FP

Median

25 industrial Web applications 9)

Conclusions:
‘The results of the … study revealed
that COSMIC outperformed Function
Points as indicator of development
effort by providing significantly better
estimations’

25

© Charles Symons 2018

Case 3: A Canadian supplier of security
and surveillance software systems

§ A customer request for new or changed function is called a ‘task’
§ Uses Scrum method; iterations last 3 – 6 weeks
§ Teams estimate tasks within each iteration in User Story Points,

and convert directly to effort in work-hours
§ CFP sizes were measured on 24 tasks from nine iterations, for

which USP ‘sizes’, estimated and actual effort data were
available 10)

26

© Charles Symons 2018

User Story Point sizes are a poor
predictor of effort

Notice the wide spread and the 17.6 hours ‘overhead’

27

© Charles Symons 2018

The CFP vs Effort graph shows a good fit,
but reveals two outliers

Two tasks with low effort/CFP had significant software re-use.
Removing these outliers improves the R2 to 0.977

28

© Charles Symons 2018

Case 4: A global automotive manufacturer
improved estimating for maintenance changes

29

§ Context: real-time embedded software

§ Starting point: text/diagrams for required
changes

§ A COSMIC-based measurement program 11)
resulted in

§ Estimating precision of 10 – 20% within one
year of starting

§ More disciplined, repeatable processes,
internal benchmarks

§ Greater customer/supplier trust

SW
change
requests

Effort
estimation

Bench-
marking

© Charles Symons 2018

Using only internal measurements of cost-drivers
simplifies the data collection/analysis task

§ No issues about consistency of your data with data from
other organizations, e.g. you define:
§ rules for what to include in ‘effort’
§ ‘experience levels’ for your own staff

§ In practice there will be fewer cost-drivers, e.g.
§ one industry, environment, culture, etc.
§ only a limited set of technologies

30

© Charles Symons 2018

Although there are ‘fewer’ cost-drivers,
they may still be quite varied

“Only a few factors affect the performance of a software project.
The trouble is that these factors are different for every project.”

Barbara Kitchenham, Professor, Keele University, UK 12)

TRUE

NOT ENTIRELY TRUE
Studies of project failures and of project risks show that a few cost-drivers are very
common, e.g.

• uncertain or changing requirements
• staff experience in the business area or with a new technology
• management failures

31

© Charles Symons 2018

So what internal data should we collect
to achieve our goals?

§ Project ID, description, etc.
§ Software size(s) in CFP
§ Effort and time (estimated and actual), team size
§ Product quality
§ Technologies used (hardware/software)

32

© Charles Symons 2018

and
§ ‘Describe the factors that affected the project favourably or

unfavourably’

Data from Post-Implementation Reviews (or Agile
‘retrospectives’) are very revealing and are
actionable

Factor affecting performance

Good business/IT collaboration

No (un)favourable factors

Late & changing requirements
Coordination with other projects
Time constraints
Unstable technology platform
Unstructured user testing
Lack of process knowledge

0 2 4 6
Number of projects reporting the factor

 Example 13)

• UK insurance
company

• 21 small
enhancement
projects

33

© Charles Symons 2018

Agenda

§ Goals and terminology
§ The challenges of measuring and controlling the

performance of software processes
§ The ‘Scatter-gun’ approach
§ The ‘Rifle-shot’ approach
§ Conclusions

34

© Charles Symons 2018

The Scatter-gun approach can be useful.
The Rifle-shot approach offers greater
benefits35

Use when you:
• have few measurements of your

own projects
• have many technologies, processes
• need a quick ‘reality-check’ of an

estimate for a new project
• want to compare your performance

against peer organizations

Use when you
• are prepared to invest in

measurement for the longer-term
benefits
• improved processes
• improved requirements

quality
• greater organizational

learning
• more accurate estimates

© Charles Symons 2018

Estimating accuracy is important: the
most accurate estimate the lowest
project cost3636

§ Under-estimation leads to
cost increases later in the
project

§ Over-estimation means the
money will be spent
(‘Parkinson’s Law’)

Actual
cost

estimated cost
Under- Over-

…. but software estimation can never be an
exact science, so repeat the control cycle
frequently

37

Software development is partly mechanical, but
partly creative and unpredictable

Agile Methods

repeat the control cycle
frequently

© Charles Symons 2018

using COSMIC Function Points!
Story Points

Thank you for your
attention

Charles Symons (www.cosmic-sizing.org)
cr.symons@btinternet.com

38

References

1. ‘ISBSG Data Collection Questionnaire: new development, redevelopment or enhancement, sized using IFPUG or Nesma Function Points’.
www.isbsg.org

2. COCOMO II Model Definition Manual, 2000, http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf
3. COSMIC/ISBSG Glossary of terms for Non-Functional Requirements and Project Requirements used in software project performance

measurement, benchmarking and estimating’, v1,0 September 2015. https://cosmic-sizing.org/publications/glossary-of-terms-for-nf-and-
project-requirements/

4. ‘Software sizing, estimation and risk management’, Daniel Galorath, Michael Evans, Auerbach Publications, ISBN 0-8493-3593-0, 2006
5. ISBSG release 11 data, enhancement projects, 2009
6. Chapter on ‘Benchmarking’ in ‘Dimensions of Productivity’, Harold van Heeringen, Frank Vogelezang, to be published 2018
7. ‘Introduction to the COSMIC method of measuring software’, v1.1, https://cosmic-sizing.org/publications/introduction-to-the-cosmic-method-of-

measuring-software-2/
8. ‘Manage the automotive embedded software development cost & productivity with the automation of a Functional Size Measurement Method

(COSMIC)” Alexandre Oriou et al, IWSM 2014, Rotterdam, www.ieeexplore.org
9. ‘Web Effort Estimation: Function Point Analysis vs. COSMIC’, Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, Federica Sarro,

Information and Software Technology 72 (2016) 90–109
10. ‘Effort Estimation with Story Points and COSMIC Function Points - An Industry Case Study’, Christophe Commeyne, Alain Abran, Rachida Djouab.

‘Software Measurement News’. Vol 21, No. 1, 2016. Obtainable from www.cosmic-sizing.org
11. Private communication, Vector Consulting (Germany), 2016
12. Remark during British Computer Society talk, c1999
13. Private data, Symons Consulting (UK), 2003

39

© Charles Symons 2018

